Skip to main content

Fast moving walkways could move 7,000 people per hour

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways. This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals. As part of the PostCarW
November 28, 2016 Read time: 3 mins
Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways.

This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals.

As part of the PostCarWorld initiative, which aims to explore the future of mobility both through the role of the car and without cars, EPFL researchers have analysed the feasibility of fast moving walkways in an urban setting, with encouraging results.

The team’s task consisted of imagining a world or a city without private cars in which space designed for automobile use could be repurposed. Individual transport needs would be met by a combination of conventional methods such as buses, metros, trams, taxis, bikes, etc., or by more innovative methods like bike- or car-sharing or urban cable cars. The EPFL’s Transport and Mobility Laboratory studied accelerating moving walkways, which can travel up to 15 km/h, the average speed at which people travel through most large cities during rush hour, to see if they could compete with other means of transport.

The researchers used real data from Geneva in developing their mathematical model, exploring various configurations of speed, acceleration, length and width, as well as intersections and entry and exit points.

They focused on the feasibility of a network of moving walkways and attempted to come up with the optimal design, taking into account the road network, demand, the speed required to make the system competitive, energy consumption and operational and budgetary constraints.

Their ideal network begins with a small ring around a car-free urban centre and extends out along primary roads on 47 different links equipped with 10 gates for a total length of 32 kilometres. There are 37 intersections where expressways would be set up using bridges or underpasses. A walkway can handle 7,000 passengers per hour, while a roadway can accommodate between 750 and 1,800 vehicles.

According to the report authors, electric moving walkways represent a sustainable and eco-friendly transport system and their operating cost is similar to that of buses. “The main downside is the cost of construction. It will cost about as much to install one line as to build a new tram line,” says lead author Riccardo Scarinci. “But the cost could drop if the system were installed on a large scale. That’s why a network of walkways only makes sense in dense and highly congested cities.”

Michel Bierlaire, the director of the Transport and Mobility Laboratory, commented, “This study proves that the concept is credible and that a car-less, pedestrian-centric city is conceivable. This is a useful starting point for urban planners to evaluate the feasibility of accelerating moving walkways.”

Related Content

  • Venkat Sumantran: ‘Smart cities are more hype than reality’
    November 23, 2018
    For all the talk of smart cities, investment in systems lags significantly behind organic expansion in most places. Andrew Stone talks to Venkat Sumantran, who has been looking at how to create a coherent framework which could help authorities answer multiple mobility questions Two megatrends are posing unprecedented challenges to those trying to keep people moving around the world’s urban areas now - and in the years and decades to come. The first is rapid urbanisation. One in six of us lived in urban a
  • Trials of new technologies to counter age-old work zone challenges
    May 19, 2017
    New solutions are being used to improve the management and safety of work zones on roads both big and small, as Jon Masters discovers. The UK government has recently been going to some lengths to paint a picture of a nation embracing a future of digital technology – understandably given the economic concerns arising from exiting the European Union. In December last year, however, the UK National Infrastructure Commission (NIC) put down a somewhat different marker for where the UK is now in terms of mobile c
  • Two wheels good
    June 25, 2018
    As cycling becomes an increasingly popular method for commuting and recreation, what moves are afoot to keep the growing numbers of cyclists safe on ever-more-busy roads? Alan Dron puts on his helmet and pedals off to look. It would have seemed incredible just a decade ago, but cycling in London has become almost unfeasibly popular. The Transport for London (TfL) June 2017 Strategic Cycling Analysis document noted there were now 670,000 cycle trips a day in the UK capital, an increase of 130% since 2000.
  • Cut freight deliveries – improve Southampton’s air quality
    November 23, 2018
    Taking the pressure off cities’ road networks can have a beneficial effect on the environment. David Crawford looks at a new economic model which seeks to quantify the societal effect of freight traffic in Southampton, one of the UK’s five most polluted cities Cuts of 60% or more in volumes of freight deliveries are being predicted - along with badly-needed improvements in air quality - from a load consolidation scheme currently being introduced in the UK port city of Southampton. The forecasts are based o