Skip to main content

Fast moving walkways could move 7,000 people per hour

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways. This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals. As part of the PostCarW
November 28, 2016 Read time: 3 mins
Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways.

This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals.

As part of the PostCarWorld initiative, which aims to explore the future of mobility both through the role of the car and without cars, EPFL researchers have analysed the feasibility of fast moving walkways in an urban setting, with encouraging results.

The team’s task consisted of imagining a world or a city without private cars in which space designed for automobile use could be repurposed. Individual transport needs would be met by a combination of conventional methods such as buses, metros, trams, taxis, bikes, etc., or by more innovative methods like bike- or car-sharing or urban cable cars. The EPFL’s Transport and Mobility Laboratory studied accelerating moving walkways, which can travel up to 15 km/h, the average speed at which people travel through most large cities during rush hour, to see if they could compete with other means of transport.

The researchers used real data from Geneva in developing their mathematical model, exploring various configurations of speed, acceleration, length and width, as well as intersections and entry and exit points.

They focused on the feasibility of a network of moving walkways and attempted to come up with the optimal design, taking into account the road network, demand, the speed required to make the system competitive, energy consumption and operational and budgetary constraints.

Their ideal network begins with a small ring around a car-free urban centre and extends out along primary roads on 47 different links equipped with 10 gates for a total length of 32 kilometres. There are 37 intersections where expressways would be set up using bridges or underpasses. A walkway can handle 7,000 passengers per hour, while a roadway can accommodate between 750 and 1,800 vehicles.

According to the report authors, electric moving walkways represent a sustainable and eco-friendly transport system and their operating cost is similar to that of buses. “The main downside is the cost of construction. It will cost about as much to install one line as to build a new tram line,” says lead author Riccardo Scarinci. “But the cost could drop if the system were installed on a large scale. That’s why a network of walkways only makes sense in dense and highly congested cities.”

Michel Bierlaire, the director of the Transport and Mobility Laboratory, commented, “This study proves that the concept is credible and that a car-less, pedestrian-centric city is conceivable. This is a useful starting point for urban planners to evaluate the feasibility of accelerating moving walkways.”

Related Content

  • August 14, 2013
    A new direction for the future of mobility?
    Tesla and SpaceX CEO Elon Musk has unveiled his vision of a futuristic Hyperloop transport system this week, proposing to build a solar-powered network of crash-proof capsules that would whisk people from San Francisco to Los Angeles in half an hour. Musk says the Hyperloop is expected to be a closed-tube transport system not unlike the pneumatic delivery systems found in some old buildings, which use a pulse of air to move a capsule and cargo to a designated location. Based on what he has revealed to date,
  • June 8, 2015
    Mature solutions for emerging economies
    Siemens’ Marcus Welz talks to David Crawford about suitable ITS solutions for emerging economies. Be bold in vision - and output - and user-oriented in practice,” Marcus Welz advises emerging economies planning ITS investments. Says the Siemens Group senior vice president and global sales director for ITS: “Their road users need better, more reliable and safer trips – but without costs increasing too much. The good news is that many countries are already tackling the big issues of traffic and the environmen
  • October 2, 2018
    Shock therapy: jolt for EV charging needed
    As sales of electric vehicles accelerate, the growth of charging infrastructure is in need of a big boost. Graham Anderson reports on whether Europe is up to it. Utilities, technology companies and vehicle manufacturers are battling to put in place new charging networks for electric vehicles (EVs) across Europe in response to a predicted dramatic surge in demand. Market experts believe that rapidly falling battery costs – which make up about one third of the costs of an electric car – and growing
  • July 11, 2018
    Cost benefit: Toronto retimings tame traffic trauma
    Canada’s largest city reckons that it is saving its taxpayers’ money simply by altering the way traffic lights work. David Crawford reviews Toronto’s ambitious plans to ease congestion. Toronto, Canada’s largest metropolis (and the fourth largest in North America), has saved its residents CAN$53 (US$42.4) for every CAN$1 (US$0.80) spent over a 2012-2016 traffic signal retiming programme, according to figures released by its Transportation Services Division. The programme covered 1,275 signals (the city’s to