Skip to main content

Fast moving walkways could move 7,000 people per hour

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways. This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals. As part of the PostCarW
November 28, 2016 Read time: 3 mins
Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways.

This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals.

As part of the PostCarWorld initiative, which aims to explore the future of mobility both through the role of the car and without cars, EPFL researchers have analysed the feasibility of fast moving walkways in an urban setting, with encouraging results.

The team’s task consisted of imagining a world or a city without private cars in which space designed for automobile use could be repurposed. Individual transport needs would be met by a combination of conventional methods such as buses, metros, trams, taxis, bikes, etc., or by more innovative methods like bike- or car-sharing or urban cable cars. The EPFL’s Transport and Mobility Laboratory studied accelerating moving walkways, which can travel up to 15 km/h, the average speed at which people travel through most large cities during rush hour, to see if they could compete with other means of transport.

The researchers used real data from Geneva in developing their mathematical model, exploring various configurations of speed, acceleration, length and width, as well as intersections and entry and exit points.

They focused on the feasibility of a network of moving walkways and attempted to come up with the optimal design, taking into account the road network, demand, the speed required to make the system competitive, energy consumption and operational and budgetary constraints.

Their ideal network begins with a small ring around a car-free urban centre and extends out along primary roads on 47 different links equipped with 10 gates for a total length of 32 kilometres. There are 37 intersections where expressways would be set up using bridges or underpasses. A walkway can handle 7,000 passengers per hour, while a roadway can accommodate between 750 and 1,800 vehicles.

According to the report authors, electric moving walkways represent a sustainable and eco-friendly transport system and their operating cost is similar to that of buses. “The main downside is the cost of construction. It will cost about as much to install one line as to build a new tram line,” says lead author Riccardo Scarinci. “But the cost could drop if the system were installed on a large scale. That’s why a network of walkways only makes sense in dense and highly congested cities.”

Michel Bierlaire, the director of the Transport and Mobility Laboratory, commented, “This study proves that the concept is credible and that a car-less, pedestrian-centric city is conceivable. This is a useful starting point for urban planners to evaluate the feasibility of accelerating moving walkways.”

Related Content

  • Xerox demonstrates effectiveness of vehicle passenger detection system
    October 8, 2015
    Xerox recently piloted its vehicle passenger detection system in Europe on the busy French-Swiss border, to demonstrate how an accurate automated system would enable transport authorities to operate high occupancy vehicle (HOV) lanes and encourage commuters to adopt carpooling. The pilot, conducted in conjunction with the French Centre for Studies and Expertise on Risks, Environment, Mobility, and Urban and Country planning (Cerema) and the Regional Directorate for the Environment, Planning and Housing (
  • Multi-modal’s long road into the transportation mainstream
    June 4, 2015
    Andrew Bardin Williams looks at 20 years of multimodal transport in the Sun Belt and beyond and the key requirement for user engagement. Phoenix residents will head to the polls in August to decide whether to implement a three-tenths of a cent sales tax to fund the city’s new multimodal transportation plan. It will be the second transportation-related sales tax hike in the past 15 years yet city officials and advocates expect the resolution to easily pass—despite the strong anti-tax environment that has dom
  • MIT researchers hack into traffic lights
    August 22, 2014
    With permission from a local road agency, researchers in from the University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays. The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknes
  • Keolis to operate ‘comprehensive mobility’ system in Dijon
    January 11, 2017
    The Greater Dijon region in France has awarded public transport operator Keolis a ’comprehensive mobility’ contract covering the management of all transport services in the region. Keolis will continue to operate the region’s transport network, Divia, for a further six years until 2022. The new comprehensive mobility contract includes buses, trams, solutions for people with reduced mobility, car parks, short and long-term bike rentals and car and bike impoundment lots. As part of the contract, Keolis