Skip to main content

Fast moving walkways could move 7,000 people per hour

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways. This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals. As part of the PostCarW
November 28, 2016 Read time: 3 mins
Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways.

This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals.

As part of the PostCarWorld initiative, which aims to explore the future of mobility both through the role of the car and without cars, EPFL researchers have analysed the feasibility of fast moving walkways in an urban setting, with encouraging results.

The team’s task consisted of imagining a world or a city without private cars in which space designed for automobile use could be repurposed. Individual transport needs would be met by a combination of conventional methods such as buses, metros, trams, taxis, bikes, etc., or by more innovative methods like bike- or car-sharing or urban cable cars. The EPFL’s Transport and Mobility Laboratory studied accelerating moving walkways, which can travel up to 15 km/h, the average speed at which people travel through most large cities during rush hour, to see if they could compete with other means of transport.

The researchers used real data from Geneva in developing their mathematical model, exploring various configurations of speed, acceleration, length and width, as well as intersections and entry and exit points.

They focused on the feasibility of a network of moving walkways and attempted to come up with the optimal design, taking into account the road network, demand, the speed required to make the system competitive, energy consumption and operational and budgetary constraints.

Their ideal network begins with a small ring around a car-free urban centre and extends out along primary roads on 47 different links equipped with 10 gates for a total length of 32 kilometres. There are 37 intersections where expressways would be set up using bridges or underpasses. A walkway can handle 7,000 passengers per hour, while a roadway can accommodate between 750 and 1,800 vehicles.

According to the report authors, electric moving walkways represent a sustainable and eco-friendly transport system and their operating cost is similar to that of buses. “The main downside is the cost of construction. It will cost about as much to install one line as to build a new tram line,” says lead author Riccardo Scarinci. “But the cost could drop if the system were installed on a large scale. That’s why a network of walkways only makes sense in dense and highly congested cities.”

Michel Bierlaire, the director of the Transport and Mobility Laboratory, commented, “This study proves that the concept is credible and that a car-less, pedestrian-centric city is conceivable. This is a useful starting point for urban planners to evaluate the feasibility of accelerating moving walkways.”

Related Content

  • ITS industry needs more effort to get to the future
    January 19, 2012
    Eric Sampson, visiting professor at Newcastle University and City University London and ambassador for ITS-UK, provides a retrospective on the last couple of decades and takes a look at what the ITS industry still needs to do to get to where it needs to be
  • Speeding ambulances through borders
    October 26, 2016
    David Crawford sees hope for stricken patients on the wrong side of the border. In treating patients with heart or stroke conditions, speed is of the essence.
  • Telford Shopping Centre gets parking upgrade
    June 29, 2015
    UK parking equipment specialist APT Skidata is to install, service and maintain new parking control and management systems at the DTZ-managed Telford Shopping Centre in the UK. The contract will see the company upgrade and replace the technology it installed more than 13 years ago, during which time it has processed approximately 150 million vehicles and payments across the centre’s 52-acre site. New hardware and software will be installed to cover the 32 entry and exit lanes to allow for 3,750 parking s
  • IBTTA Summit: satellite tolling is the future
    August 15, 2019
    IBTTA members met in Florida to consider the technological changes that will impact their businesses – including satellite tolling. Colin Sowman reports from Orlando Over decades, the technology employed in toll collection has been honed to near perfection – automatic number plate recognition (ANPR) and radio frequency identification (RFID) tags are easily within a couple of per cent of infallibility even at highway speeds. However, technical innovations beyond the confines of the toll road cannot b