Skip to main content

Fast moving walkways could move 7,000 people per hour

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways. This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals. As part of the PostCarW
November 28, 2016 Read time: 3 mins
Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways.

This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals.

As part of the PostCarWorld initiative, which aims to explore the future of mobility both through the role of the car and without cars, EPFL researchers have analysed the feasibility of fast moving walkways in an urban setting, with encouraging results.

The team’s task consisted of imagining a world or a city without private cars in which space designed for automobile use could be repurposed. Individual transport needs would be met by a combination of conventional methods such as buses, metros, trams, taxis, bikes, etc., or by more innovative methods like bike- or car-sharing or urban cable cars. The EPFL’s Transport and Mobility Laboratory studied accelerating moving walkways, which can travel up to 15 km/h, the average speed at which people travel through most large cities during rush hour, to see if they could compete with other means of transport.

The researchers used real data from Geneva in developing their mathematical model, exploring various configurations of speed, acceleration, length and width, as well as intersections and entry and exit points.

They focused on the feasibility of a network of moving walkways and attempted to come up with the optimal design, taking into account the road network, demand, the speed required to make the system competitive, energy consumption and operational and budgetary constraints.

Their ideal network begins with a small ring around a car-free urban centre and extends out along primary roads on 47 different links equipped with 10 gates for a total length of 32 kilometres. There are 37 intersections where expressways would be set up using bridges or underpasses. A walkway can handle 7,000 passengers per hour, while a roadway can accommodate between 750 and 1,800 vehicles.

According to the report authors, electric moving walkways represent a sustainable and eco-friendly transport system and their operating cost is similar to that of buses. “The main downside is the cost of construction. It will cost about as much to install one line as to build a new tram line,” says lead author Riccardo Scarinci. “But the cost could drop if the system were installed on a large scale. That’s why a network of walkways only makes sense in dense and highly congested cities.”

Michel Bierlaire, the director of the Transport and Mobility Laboratory, commented, “This study proves that the concept is credible and that a car-less, pedestrian-centric city is conceivable. This is a useful starting point for urban planners to evaluate the feasibility of accelerating moving walkways.”

Related Content

  • NOCoE delivers data for diligent DOTs
    April 29, 2015
    David Crawford talks to Dennis Motiani about the role of the new National Operations Centre of Excellence. Consolidating the collective experience of the US transportation system’s management and operations (TSM&O) community, streamlining its information gathering, while cutting research times and costs are the key drivers behind the country’s new National Operations Centre of Excellence (NOCoE). Launched in January at the annual meeting of the Transportation Research Board (TRB), this sets out to be a sin
  • EU research develops method for evaluating critical infrastructure
    January 10, 2013
    The European Commission’s SeRoN research project has drawn to a close, having developed a sophisticated method of identifying and quantifying threats to critical infrastructure. In December 2008 the European Commission published the directive 2008/114/EC on the identification, designation and assessment of the need to improve ‘European critical infrastructure’. In line with the objectives formulated in this directive, the SeRoN (Security of Road Transport Networks) research project was established in Novemb
  • Georgia DoT showcases its connectivity
    March 3, 2020
    Georgia DoT’s regional connected vehicle programme could be a model for the rest of the US. Adam Hill speaks to two men involved in making it a reality – and takes a look at the state’s first-ever Tech Showcase
  • Wider uses for weigh in motion data
    March 18, 2014
    Colin Sowman talks to Terry Bergan of International Road Dynamics about the latest uses of weigh-in-motion systems. Raising allowable truck weight limits improve transport efficiency but leaves an ever-increasing number of bridges vulnerable to being overloaded and damaged by vehicles heavier, and in some cases far heavier, than they were designed to carry. The simplistic solution is to impose weight restrictions and erect appropriate signs - but this could have severe knock-on effect on trucking operations