Skip to main content

Europe will have over two million public charging points by 2017

A new report from Frost & Sullivan - “Strategic Technology and Market Analysis of Electric Vehicle Charging Infrastructure in Europe” predicts that the electric venicle (EV) charging infrastructure market could grow from less than 10,000 charging stations in 2010 to more than two million in 2017, 3% of which would be based on very-fast charging and inductive charging. “We are awaiting that European governments will forecast a budget of €700 million over the next seven years to build a charging infrastruc
April 19, 2012 Read time: 2 mins
A new report from Frost & Sullivan - “Strategic Technology and Market Analysis of Electric Vehicle Charging Infrastructure in Europe” predicts that the electric venicle (EV) charging infrastructure market could grow from less than 10,000 charging stations in 2010 to more than two million in 2017, 3% of which would be based on very-fast charging and inductive charging.

“We are awaiting that European governments will forecast a budget of €700 million over the next seven years to build a charging infrastructure” said Anjan Hemanth Kumar, Frost & Sullivan analyst. ”It will be one of the key factors helping toward the mass deployment of public EV charging infrastructure.”

According to the report, €5 billion investment will be needed over the next seven years. With the expected two million charging stations, Frost & Sullivan foresees for 2017 a ratio of 1.8 cars for each charging station. This scenario is between other even more optimistic (3.2 million charging points by 2017) and other rather pessimistic (1.3 million charging points by 2017) studies already conducted on this particular topic.

According to the report, most of the charging infrastructure (54%) will rely on Level 1 charging, meaning a 10-12A current output in a 230V power input. This mode will mainly be used for charging overnight at home taking 6-8 hours. Semi fast charging (Level 2) will represent 43% of the charging infrastructure, which is also coming from a 230V power input, provides between 16-32A of current output, allowing batteries to charge more than twice as fast as Level 1 charging.

Very-fast charging (Level 3), with different standards and higher safety requirements, will only represent 3% of the charging infrastructure by 2017. Inductive charging will capture around 20-25% of the DC rapid charging share

Related Content

  • Car traffic in London is down but congestion is up, says new study
    May 18, 2016
    London Congestion Trends, an in-depth study of the causes of traffic congestion in London between 2012 and 2015 published by Inrix, indicates that congestion in London is increasing, with journey times in Central London growing by 12 per cent annually. Inrix says this is consistent with data that shows that the London economy and population are growing, which normally results in an increase in gridlock. Further, unemployment and fuel prices are down, both of which usually mean a rise in traffic. Despite thi
  • Inrix identifies the worst traffic hotspots in the 25 most congested US cities
    September 28, 2017
    Inrix has published its latest research on the worst traffic hotspots in America. Using Inrix Roadway Analytics, a cloud-based traffic analysis tool, Inrix analysed and ranked more than 100,000 traffic hotspots in the 25 most congested US cities. The economic cost of hotspots was also calculated in terms of wasted time, lost fuel and carbon emissions over the next decade. The research identified and ranked 108,000 traffic hotspots in the 25 most congested cities in the US identified by the INRIX Global T
  • Safety measures can cut road deaths – and here’s the proof
    May 14, 2024
    Johns Hopkins report using iRAP methodology shows 700,000 fatalities prevented
  • Ecotricity to install UK motorway electric vehicle charge points
    October 1, 2012
    UK company Ecotricity is to install a network of rapid charging points in motorway service stations around the country enabling an electric car to be recharged in around 15 minutes. Conventional charging points usually take several hours to provide enough power for modern electric cars. With a range of around 100 miles, this has meant the vehicles are largely used for short journeys in towns and cities, limiting their uptake by consumers.