Skip to main content

Eco fuel economy

A study conducted by VTT Technical Research Centre of Finland suggests that there is practically no difference between commercial petrol grades 95E10 and 98E5 sold in Finland with regard to fuel consumption during normal driving. The finding is based on driving tests conducted by VTT using six used cars of different make under laboratory conditions. It has been claimed in public that fuel consumption is higher with 95E10 petrol than with its predecessor 95E or the 98E5 petrol currently on the market. The su
April 19, 2012 Read time: 3 mins
RSSA study conducted by 814 VTT Technical Research Centre of Finland suggests that there is practically no difference between commercial petrol grades 95E10 and 98E5 sold in Finland with regard to fuel consumption during normal driving. The finding is based on driving tests conducted by VTT using six used cars of different make under laboratory conditions. It has been claimed in public that fuel consumption is higher with 95E10 petrol than with its predecessor 95E or the 98E5 petrol currently on the market. The suspected higher consumption has deterred drivers of cars whose manufacturers recommend E10 from actually using it.

“The point of this study was to highlight how fuel consumption should actually be measured to give comparable results. Measuring fuel consumption very accurately is not as simple as it seems, because other factors affect consumption besides the fuel itself. In laboratory conditions, we can eliminate these other factors,” said Juhani Laurikko, a Principal Scientist at VTT.

The VTT measurements show that the cars tested used an average of 10.30 litres of 95E10/ 100km, as opposed to 10.23 litres of 98E5/100km. The difference was 0.07 in favour of 98E5 on average, meaning that using 95E10 petrol, which has a higher ethanol content, increases consumption by 0.7%. Normalising measurement results of each individual test run with observed slight scatter in actual total work done over the driving cycle yields to somewhat higher overall difference, 1.0%. An estimation of calorific values based on approximate fuel composition came out at 1.1% in favour of E5, which is highly consistent with the aforementioned 1.0% difference in consumption. Fuel consumption depends mainly on the calorific value of the fuel. VTT obtained all the fuel used for the test runs at the same time from the Otaniemi Neste Oil service station in Espoo. So as to ensure that ethanol contents was in accordance with the specifications, the ethanol contents of both fuel batches was determined by the Finnish Customs Laboratory.

The results showed 4.7% for the E5-grade and 9.4% for the E10 grade. VTT performed the comparison test under controlled laboratory conditions, because of practical difficulties in measuring a car’s fuel consumption accurately and repeatability in normal driving. Therefore, the claims concerning differences in fuel consumption may be due to any number of other factors besides the type of fuel used. The study involved six petrol-driven cars loaned by VTT employees. The cars were of model years between 1999 and 2010 and, according to their manufacturers’ recommendations, compatible with E10-fuel. The cars were checked to ensure they were free of any faults or malfunctions that could have influenced the test results. VTT measured fuel consumption using the simplest and most reliable method: measuring the weight of fuel consumed. As the density of the fuel grades was known, establishing the volume of fuel consumed was simple. The driving programme used for the test drives was the FTP72 programme, which features more aggressive accelerations and a high average speed than corresponding EU cycle. Two drivers were used for the tests, both of them experienced and qualified for conducting accredited exhaust emission tests. Each car was driven by the same driver in all tests. Two tests were conducted on consecutive days for each petrol grade. The running order of the fuels was random. The study is a part of the five-year TransEco research programme launched at the initiative of VTT to make road traffic energy use more efficient, develop emissions-reducing technologies and commercialise the results of the development work.

For more information on companies in this article

Related Content

  • Rethinking urban traffic congestion to put people first
    August 28, 2015
    Following the publication of the Texas A&M Transportation Institute/Inrix report on urban traffic congestion in the US, Robert Puentes, senior fellow with the Brookings Institution’s Metropolitan Policy Program , says that while the focus and themes of the report are largely the same as previous years, big changes are underway in how we study, think about, and address metropolitan traffic congestion. This new, modern approach calls into question whether the endless pursuit of congestion relief makes sense a
  • CHAMP final workshop
    June 12, 2014
    The European Cycling Heroes Advancing sustainable Mobility Practice (CHAMP) project will come to an end in September 2014. The final workshop takes place in Gent, Belgium on 11-12 September. The CHAMP project brings together leading cities in the field of cycling. Within the project, they have looked at innovative ways to further boost cycling in their cities and enhance local policies. CHAMP has developed and tested a performance analysis tool, building on self-analysis as well as peer review by ot
  • The Canadian way
    July 16, 2012
    Delcan has developed an ITS project evaluation methodology for Transport Canada. Victor Bruzon explains how it will assist in selecting and managing programmes. ITS projects offer a cost-effective solution for many transportation problems. Individual projects are often not evaluated and such evaluations can be restricted by limited data, the ability of ITS to affect only a portion of the transport network, and by evaluation methodologies that were developed with more traditional transport investments in min
  • Ramp metering delivers - again
    January 27, 2012
    Though still controversial, ramp metering, which has been around for nearly 50 years, continues to deliver substantial benefits, and generally for relatively small cost. Kansas City is a case in point. In March 2010, Kansas City Scout, a partnership between the Missouri and Kansas Departments of Transportation to provide ITS for the greater Kansas City Area, activated the first ramp metering system in the region. The project is located on an 8.85km (5.5 mile) section of Interstate 435 from Metcalf Avenue to