Skip to main content

Eco fuel economy

A study conducted by VTT Technical Research Centre of Finland suggests that there is practically no difference between commercial petrol grades 95E10 and 98E5 sold in Finland with regard to fuel consumption during normal driving. The finding is based on driving tests conducted by VTT using six used cars of different make under laboratory conditions. It has been claimed in public that fuel consumption is higher with 95E10 petrol than with its predecessor 95E or the 98E5 petrol currently on the market. The su
April 19, 2012 Read time: 3 mins
RSSA study conducted by 814 VTT Technical Research Centre of Finland suggests that there is practically no difference between commercial petrol grades 95E10 and 98E5 sold in Finland with regard to fuel consumption during normal driving. The finding is based on driving tests conducted by VTT using six used cars of different make under laboratory conditions. It has been claimed in public that fuel consumption is higher with 95E10 petrol than with its predecessor 95E or the 98E5 petrol currently on the market. The suspected higher consumption has deterred drivers of cars whose manufacturers recommend E10 from actually using it.

“The point of this study was to highlight how fuel consumption should actually be measured to give comparable results. Measuring fuel consumption very accurately is not as simple as it seems, because other factors affect consumption besides the fuel itself. In laboratory conditions, we can eliminate these other factors,” said Juhani Laurikko, a Principal Scientist at VTT.

The VTT measurements show that the cars tested used an average of 10.30 litres of 95E10/ 100km, as opposed to 10.23 litres of 98E5/100km. The difference was 0.07 in favour of 98E5 on average, meaning that using 95E10 petrol, which has a higher ethanol content, increases consumption by 0.7%. Normalising measurement results of each individual test run with observed slight scatter in actual total work done over the driving cycle yields to somewhat higher overall difference, 1.0%. An estimation of calorific values based on approximate fuel composition came out at 1.1% in favour of E5, which is highly consistent with the aforementioned 1.0% difference in consumption. Fuel consumption depends mainly on the calorific value of the fuel. VTT obtained all the fuel used for the test runs at the same time from the Otaniemi Neste Oil service station in Espoo. So as to ensure that ethanol contents was in accordance with the specifications, the ethanol contents of both fuel batches was determined by the Finnish Customs Laboratory.

The results showed 4.7% for the E5-grade and 9.4% for the E10 grade. VTT performed the comparison test under controlled laboratory conditions, because of practical difficulties in measuring a car’s fuel consumption accurately and repeatability in normal driving. Therefore, the claims concerning differences in fuel consumption may be due to any number of other factors besides the type of fuel used. The study involved six petrol-driven cars loaned by VTT employees. The cars were of model years between 1999 and 2010 and, according to their manufacturers’ recommendations, compatible with E10-fuel. The cars were checked to ensure they were free of any faults or malfunctions that could have influenced the test results. VTT measured fuel consumption using the simplest and most reliable method: measuring the weight of fuel consumed. As the density of the fuel grades was known, establishing the volume of fuel consumed was simple. The driving programme used for the test drives was the FTP72 programme, which features more aggressive accelerations and a high average speed than corresponding EU cycle. Two drivers were used for the tests, both of them experienced and qualified for conducting accredited exhaust emission tests. Each car was driven by the same driver in all tests. Two tests were conducted on consecutive days for each petrol grade. The running order of the fuels was random. The study is a part of the five-year TransEco research programme launched at the initiative of VTT to make road traffic energy use more efficient, develop emissions-reducing technologies and commercialise the results of the development work.

Related Content

  • Impact of speed limits in Barcelona
    January 20, 2012
    When Barcelona imposed an 80km/h (50mph), the result was significant in environmental, accident, fatality and injury terms. The 80km/h speed limit had the same positive environmental effect as if 22,100 cars were eliminated from the roads in the metropolitan area. Moreover, a reduction in the consumption of fuel by more than 24,000 tonnes per year was also achieved, while accidents, fatalities and injuries also showed substantial improvement.
  • Semi-autonomous hybrid vehicle trials show fuel, emission savings
    July 16, 2012
    The Transport Research Laboratory has unveiled an innovative semi-autonomous vehicle prototype. It offers improves in environmental performance and safety but also displays some shortcomings. Mike Woof reports. The UK's Transport Research Laboratory (TRL) has been working on an innovative project to develop a prototype vehicle intended to reduce fuel consumption. Based on a Ford Escape hybrid model, TRL's Sentience vehicle uses a combination of mobile communications and mapping technologies to reduce fuel c
  • VW to roll out 313mpg car in Germany and UK
    May 18, 2012
    Last week at the Qatar Motor Show saw the world debut of Volkswagen’s XL1, a diesel-electric hybrid two-seater that can do 313mpg (0.9 l/100 km) and an announcement that the vehicle will enter limited production for the UK and German markets in 2013. If it proves popular, VW says it plans to increase production and sell in other countries.
  • Pollution has more than one solution
    April 7, 2014
    Professor Alexander Baklanov of the World Meteorological Organization talks to Colin Sowman about the difficulties of reducing urban pollution. The inhabitants of Beijing have recently been suffering pollution levels 20 times the World Health Organisation’s recommended limit while the European Union is revitalising its efforts to implement and enforce air quality standards. Almost inevitably much of the clean-up efforts are likely to focus on traffic planners and engineers.