Skip to main content

Different electric vehicles pioneer best technology first

According to the IDTechEx report, Electric Vehicle Forecasts, Trends and Opportunities 2015-2025, to benchmark new technology for electric vehicles it is vital to look at all of the off-road, on-road, water and airborne e-vehicles analysed in. For example, electric cars will have at least six types of energy harvesting variously converting ultra violet, infrared, visible light, vibration, vertical, lateral and forward movement into electricity but also heat differences. However, none of these first appear i
February 25, 2015 Read time: 2 mins
According to the 6582 IDTechEx report, Electric Vehicle Forecasts, Trends and Opportunities 2015-2025, to benchmark new technology for electric vehicles it is vital to look at all of the off-road, on-road, water and airborne e-vehicles analysed in the report.

For example, electric cars will have at least six types of energy harvesting variously converting ultra violet, infrared, visible light, vibration, vertical, lateral and forward movement into electricity but also heat differences.
 
However, none of these first appear in cars. Combined energy harvesting is also seen elsewhere first, from military to marine vehicles. Energy harvesting shock absorbers (Levant Power) are trialled on buses, not cars because they are most easily made viable on large vehicles first. Proponents expect to address cars about five years after buses adopt them, including taking some of the ‘free’ electricity and using it for active suspension.
 
Thermoelectric harvesting (AIST, Komatsu KELK) will be more practicable on buses, military and other large vehicles before cars. Structural electronics, where the bodywork is intelligent and power storing, was first seen in aircraft then cars, as reported by IDTechEx report Structural Electronics 2015-2025.
 
In-wheel traction motors are in production buses in the Netherlands, China and Japan. Lower cost, more rugged asynchronous motors are favoured in large then smaller vehicles. Following this, the 6861 Proton hybrid car is being launched in 2015 with in-wheel asynchronous motors. Jet engines have proved viable on some buses when used as range extenders. Rotary combustion engines, first seen in e-aircraft, will appear in Proton cars as range extenders in 2015.
 
In 2014, the first serious production of inverters with the more-efficient silicon carbide SiC power components (8010 Sumitomo Electric, 598 Panasonic) was for large vehicles. They run cooler so the weight, cost and bulk of water cooling is not needed and electricity is also saved.
 
Voltages are rising. On buses we see up to 700V systems using high-voltage, faster motors to save on copper and transfer power more efficiently. Large electric vehicles usually adopt new technology first so they are a bellwether for the future of cars and two wheelers.

For more information on companies in this article

Related Content

  • Australia ‘must choose an electric car charging norm’
    September 19, 2013
    According to Professor Thomas Braunl, director of the renewable energy vehicle project at the University of Western Australia, it’s time for Australia to choose a standard for vehicle charging connectors. When the university started Australia’s first electric vehicle trial in Western Australia in 2010, there were no manufacturer-built cars available and locally built conversions had to be used. As of today, Mitsubishi, Nissan, Holden and Tesla offer electric cars in the Australian market. Nearly all inte
  • Kapsch TrafficCom sees the light with its Elumian
    September 20, 2024
    Toll transponder uses all sources of light thanks to Powerfoyle technology from Exeger
  • Berlin introduces wirelessly-charged electric bus Line
    September 4, 2015
    Berlin has become the first capital city to introduce a wirelessly charged electric bus, as part of a project funded by Federal Ministry of Transport and Digital Infrastructure. The Berlin Transport Authority, Berliner Verkehrsbetriebe (BVG) has introduced four Solaris Urbino 12 electric buses equipped with the Bombardier Primove inductive charging system and traction equipment from Vossloh Kiepe. The buses now operate on the 6.1 kilometre line 204 between Südkreuz and Zoologischer Garten (Hertzallee). Vos
  • Hydrogen Mobility Europe deploys first 100 zero-emission vehicles
    February 8, 2017
    Hydrogen Mobility Europe (H2ME), the multi-country, multi-partner project which aims to demonstrate that hydrogen can support Europe’s future transport demands, has deployed its first 100 fuel cell electric vehicles (FCEVs) deployed by H2ME in Germany, France and the UK. H2ME brings together eight European countries to address the actions required to make the hydrogen mobility sector ready for market. H2ME plans to perform large-scale market tests of hydrogen refuelling infrastructure and deploy passeng