Skip to main content

Different electric vehicles pioneer best technology first

According to the IDTechEx report, Electric Vehicle Forecasts, Trends and Opportunities 2015-2025, to benchmark new technology for electric vehicles it is vital to look at all of the off-road, on-road, water and airborne e-vehicles analysed in. For example, electric cars will have at least six types of energy harvesting variously converting ultra violet, infrared, visible light, vibration, vertical, lateral and forward movement into electricity but also heat differences. However, none of these first appear i
February 25, 2015 Read time: 2 mins
According to the 6582 IDTechEx report, Electric Vehicle Forecasts, Trends and Opportunities 2015-2025, to benchmark new technology for electric vehicles it is vital to look at all of the off-road, on-road, water and airborne e-vehicles analysed in the report.

For example, electric cars will have at least six types of energy harvesting variously converting ultra violet, infrared, visible light, vibration, vertical, lateral and forward movement into electricity but also heat differences.
 
However, none of these first appear in cars. Combined energy harvesting is also seen elsewhere first, from military to marine vehicles. Energy harvesting shock absorbers (Levant Power) are trialled on buses, not cars because they are most easily made viable on large vehicles first. Proponents expect to address cars about five years after buses adopt them, including taking some of the ‘free’ electricity and using it for active suspension.
 
Thermoelectric harvesting (AIST, Komatsu KELK) will be more practicable on buses, military and other large vehicles before cars. Structural electronics, where the bodywork is intelligent and power storing, was first seen in aircraft then cars, as reported by IDTechEx report Structural Electronics 2015-2025.
 
In-wheel traction motors are in production buses in the Netherlands, China and Japan. Lower cost, more rugged asynchronous motors are favoured in large then smaller vehicles. Following this, the 6861 Proton hybrid car is being launched in 2015 with in-wheel asynchronous motors. Jet engines have proved viable on some buses when used as range extenders. Rotary combustion engines, first seen in e-aircraft, will appear in Proton cars as range extenders in 2015.
 
In 2014, the first serious production of inverters with the more-efficient silicon carbide SiC power components (8010 Sumitomo Electric, 598 Panasonic) was for large vehicles. They run cooler so the weight, cost and bulk of water cooling is not needed and electricity is also saved.
 
Voltages are rising. On buses we see up to 700V systems using high-voltage, faster motors to save on copper and transfer power more efficiently. Large electric vehicles usually adopt new technology first so they are a bellwether for the future of cars and two wheelers.

Related Content

  • April 25, 2024
    AMG launches small solution to big challenges
    AMG is launching a ‘world-beating’ Gigabit Ethernet media converter, the AMG260M range, at ITS America 2024. Its new ultra-compact fibre optic and industrially hardened AMG260M is said to be the world’s smallest full-featured 90W Power over Ethernet industrial gigabit media converter.
  • November 25, 2015
    Next-generation fuel cells ready for low-emission electricity production
    The VTT Technical Research Centre of Finland, under the INNO-SOFC project and in collaboration with Convion and Elcogen, is developing a new-generation, long-life fuel cell system offering efficiency higher than that of competing technologies. The project aims to develop new, energy-efficient and commercially viable applications.
  • April 16, 2012
    Grant to develop thermoelectric-based energy recovery system for cars
    Amerigon Incorporated has been awarded an US$8 million grant from the US Department of Energy (DOE) to lead the development of an energy recovery system that can improve passenger car fuel efficiency by five per cent by converting waste heat from gas exhaust into electric power using a thermoelectric generator.
  • May 26, 2015
    China's RFID market value forecast to reach US$4.3 billion by 2025
    According to a new report by IDTechEx, RFID in China 2015-2025, not only will the use of RFID in China become a US$4.3 billion market in 2025, but that figure will almost double if the value of tags and readers made in the country and exported elsewhere is included. Already in 2015 China had 85 per cent of the global manufacture capacity of RFID tags, with over 150 RFID companies operating in the country.