Skip to main content

Continental focusing on LED headlight innovations

Used until now in vehicle exterior lighting primarily for daytime running lights, tail lights, indicators, automotive supplier Continental claims light-emitting diodes (LEDs) now provide sufficient luminosity to function as low-beam or high-beam lights as well in irradiating the vehicle surroundings. LEDs offer numerous advantages over halogen or xenon lights. They are more efficient and offer a higher degree of safety. The light emitted by the LED is more like sunlight than other light sources and is t
March 14, 2014 Read time: 2 mins
Used until now in vehicle exterior lighting primarily for daytime running lights, tail lights, indicators, automotive supplier 260 Continental claims light-emitting diodes (LEDs) now provide sufficient luminosity to function as low-beam or high-beam lights as well in irradiating the vehicle surroundings.

LEDs offer numerous advantages over halogen or xenon lights. They are more efficient and offer a higher degree of safety. The light emitted by the LED is more like sunlight than other light sources and is therefore more pleasant for road users. In combination with assistance systems, LED headlights additionally enable other road users or objects to be specifically picked out and illuminated. At the same time, LEDs can respond more quickly in dimming the light directed at certain areas – to avoid blinding oncoming traffic, for example. LEDs also have a service life of up to 10,000 hours, significantly longer than the roughly 1,000 hours that conventional lights provide. Their energy consumption is considerably lower; a simple LED low-beam headlight requires only 18 watts as against 35 for its xenon counterpart.  In addition, LEDs withstand vibrations better and do not require maintenance.

However, Continental says LED lights require a specific electronic control unit, meaning that LEDs cannot be operated with the usual 12-volt on-board voltage like conventional light bulbs. Continental's LED light control units therefore have an input circuit that generates a suitable operating voltage. The electronics also control light intensity by means of pulse-width modulation.

Dr. Maximilian Austerer, group leader for systems development of light control units at Continental in Austria notes: "Our light control units are perfectly tailored to this task and have already stood the test in terms of performance in a number of series projects."

For more information on companies in this article

Related Content

  • New technologies enable increased collaboration, cooperation
    July 17, 2012
    The continued expansion of IP camera networks increases the availability of useful information. At the same time, the opportunity exists to increase inter-agency collaboration. This makes information management all the more necessary in the control room environment. But the transportation sector could do a lot to help itself by gaining a better idea up front of what and how it wants to do things, says Electrosonic's Karl Johnson.
  • Is machine vision the future of enforcement?
    January 25, 2012
    Leading automated enforcement system suppliers talk about how they see machine vision technology affecting the sector in the coming years
  • Give offending drivers credit for good behaviour
    July 27, 2012
    Andrew Rooke and Dave Marples of Technolution B.V. take a look at what can be done to address a long-standing problem: the all-or-nothing approach of automated enforcement. To start, a brief history of speeding: on 14 November 1896, the first Veteran Car Run was staged in England from London to Brighton. It was organised to celebrate new British legislation to raise the maximum speed of vehicles from four to 14mph while also removing the need for a person waving a red flag to walk in front of the car and wa
  • SENSKIN project develops first prototype of infrastructure monitoring sensor
    February 3, 2017
    SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structur