Skip to main content

Contact lens technology could offer alternative to battery power storage

Research by UK organisations the University of Surrey and Augmented Optics, in collaboration with the University of Bristol, has developed technology which could revolutionise the capabilities of appliances that have previously relied on battery power to work. It could also revolutionise electric cars, allowing the possibility for them to recharge as quickly a regular non-electric car refuels with petrol, instead of the current process which takes approximately 6-8 hours. They believe the development by
December 7, 2016 Read time: 2 mins
Research by UK organisations the University of Surrey and Augmented Optics, in collaboration with the University of Bristol, has developed technology which could revolutionise the capabilities of appliances that have previously relied on battery power to work. It could also revolutionise electric cars, allowing the possibility for them to recharge as quickly a regular non-electric car refuels with petrol, instead of the current process which takes approximately 6-8 hours.

They believe the development by Augmented Optics could translate into very high energy density super-capacitors making it possible to recharge a mobile phone, laptop or other mobile devices in just a few seconds.

They say the technology, adapted from the principles used to make soft contact lenses, which was developed by Dr Donald Highgate of Augmented Optics, could have an impact across a number of industries, including transport, aerospace, energy generation and household applications such as mobile phones, flat screen electronic devices and biosensors.  Super-capacitors, an alternative power source to batteries, store energy using electrodes and electrolytes and both charge and deliver energy quickly, unlike conventional batteries which do so in a much slower, more sustained way. They have the ability to charge and discharge rapidly over very large numbers of cycles.  However, because of their poor energy density per kilogramme, approximately just one twentieth of existing battery technology, they have, until now, been unable to compete with conventional battery energy storage in many applications.

Super-capacitor buses are already being used in China, but have a very limited range; this technology could allow them to travel a lot further between recharges.  Instead of recharging every 2-3 stops this technology could mean they only need to recharge every 20-30 stops and that will only take a few seconds.

Elon Musk, of Tesla and SpaceX, has previously stated his belief that super-capacitors are likely to be the technology for future electric air transportation.

Related Content

  • February 3, 2012
    Developments in signal head lens technology
    Heads and tails Leading manufacturers of traffic signal systems discuss developments in signal head technology as well as some of the legacy issues which affect future deployments Transparent model of Dambach's ACTROS.line technology, showing the bus electronics in the signal head Cowls could be superseded by the greater use of lens technology
  • January 18, 2023
    Tolling Matters: Getting the balance right
    The concept of road usage charging (RUC) is slowly coming to the fore. But it isn’t just a question of good fiscal sense – it’s about promoting equity and ensuring sustainability too, says Scott Jacobs of Emovis
  • April 23, 2012
    IBM Research boosts Battery 500 project
    IBM has announced that two industry leaders, Asahi Kasei and Central Glass, will join its Battery 500 Project team and collaborate on far-reaching research with the potential to accelerate the switch from gasoline to electricity as the primary power source for vehicles. In 2009, IBM Research pioneered a sustainable mobility project to develop lithium-air battery technology capable of powering a family-sized electric car for approximately 500 miles (800 km) on a single charge.
  • January 26, 2012
    Charging trial tests smartphones for road user charging
    A new project is under way in Minnesota, investigating whether smartphones are technically and publicly acceptable for use in road user charging. Jason Barnes reports. In Minnesota, trials have been launched to determine whether smartphones are technologically viable and acceptable to the public for distance based road user charging (RUC). The Midwestern US state has engaged with Battelle to explore RUC technology options in a project which falls under the auspices of the US Federal Connected Vehicle progra