Skip to main content

Contact lens technology could offer alternative to battery power storage

Research by UK organisations the University of Surrey and Augmented Optics, in collaboration with the University of Bristol, has developed technology which could revolutionise the capabilities of appliances that have previously relied on battery power to work. It could also revolutionise electric cars, allowing the possibility for them to recharge as quickly a regular non-electric car refuels with petrol, instead of the current process which takes approximately 6-8 hours. They believe the development by
December 7, 2016 Read time: 2 mins
Research by UK organisations the University of Surrey and Augmented Optics, in collaboration with the University of Bristol, has developed technology which could revolutionise the capabilities of appliances that have previously relied on battery power to work. It could also revolutionise electric cars, allowing the possibility for them to recharge as quickly a regular non-electric car refuels with petrol, instead of the current process which takes approximately 6-8 hours.

They believe the development by Augmented Optics could translate into very high energy density super-capacitors making it possible to recharge a mobile phone, laptop or other mobile devices in just a few seconds.

They say the technology, adapted from the principles used to make soft contact lenses, which was developed by Dr Donald Highgate of Augmented Optics, could have an impact across a number of industries, including transport, aerospace, energy generation and household applications such as mobile phones, flat screen electronic devices and biosensors.  Super-capacitors, an alternative power source to batteries, store energy using electrodes and electrolytes and both charge and deliver energy quickly, unlike conventional batteries which do so in a much slower, more sustained way. They have the ability to charge and discharge rapidly over very large numbers of cycles.  However, because of their poor energy density per kilogramme, approximately just one twentieth of existing battery technology, they have, until now, been unable to compete with conventional battery energy storage in many applications.

Super-capacitor buses are already being used in China, but have a very limited range; this technology could allow them to travel a lot further between recharges.  Instead of recharging every 2-3 stops this technology could mean they only need to recharge every 20-30 stops and that will only take a few seconds.

Elon Musk, of Tesla and SpaceX, has previously stated his belief that super-capacitors are likely to be the technology for future electric air transportation.

Related Content

  • November 21, 2013
    Autonomous vehicles, the pros and cons
    Driver interface and human factors could provide the biggest obstacles to autonomous vehicles as Jon Masters discovers.
  • July 30, 2012
    IP video storage systems
    Vicon Industries is replacing its line of RAID storage devices with iSCSI SAN-RAID models that make use of newer networking and storage technology. Like traditional RAID devices, the new models feature multiple, hot-swappable hard drives which provide secure storage of large quantities of recorded digital video. However, the new models are designed for use in a 'Storage Area Network', meaning that they no longer need to be physically connected to a DVR or NVR. Instead, the SAN-RAID units exist as part of a
  • February 3, 2012
    The future of in-vehicle navigation systems
    TRL's Alan Stevens looks at the evolution and future prospects of in-vehicle navigation devices. Human-Machine Interaction (HMI) plays a crucial role in the safety of vehicles on our roads. Until we achieve full automation (and that's a debatable prospect anyway) a driver's interaction with the vehicle - all the controls, information and systems - holds a pivotal role in safe driving.
  • April 17, 2012
    Historic milestone for EVs claimed
    Utah State University Research Foundation's Energy Dynamics Laboratory has announced that it has operated the first high-power, high-efficiency wireless power transfer system capable of transferring enough energy to quickly charge an electric vehicle. The lightweight, low-profile system demonstrated 90 per cent electrical transfer efficiency of five kilowatts over an air gap of 10 inches. The demonstration at EDL's North Logan, Utah, facility further validates that electric vehicles can efficiently be charg