Skip to main content

Confusion over electric motors for heavy trucks

According to Dr Peter Harrop of research company IDTechEx, there is still no agreement on the best type of electric motor to use in heavy trucks. The company’s analysis indicates that the booming, confusing traction motor business will rise to around US$400 billion in 2027. Its new report, Electric Motors for Electric Vehicles 2017-2027 navigates the jargon, the design options and the disagreements. The changing needs and evolving technology are matched to create forecasts and technology timelines based
December 19, 2016 Read time: 4 mins
According to Dr Peter Harrop of research company 6582 IDTechEx, there is still no agreement on the best type of electric motor to use in heavy trucks.

The company’s analysis indicates that the booming, confusing traction motor business will rise to around US$400 billion in 2027. Its new report, Electric Motors for Electric Vehicles 2017-2027 navigates the jargon, the design options and the disagreements. The changing needs and evolving technology are matched to create forecasts and technology timelines based on intensive recent travel and interviews by PhD level analysts.
 
Rotating electric machines (REM) propel electric vehicles at least some all of the time by land, water and air. In a hybrid the motor may sometimes have to run hotter due to hot engine systems nearby and tougher duty cycles. This affects motor design as do cost-performance compromises for the very different duty cycles and environments experienced by vehicles land, water and air. Off-road vehicle REMs are very different from on-road. The second most expensive part of an EV after the energy storage is typically the REM system including its intimately related motor controller.
 
The report reveals how the REM system is taking a larger share of cost over the years as simpler batteries reduce in cost. By contrast, REM systems are variously being asked to grab regenerative energy, eliminate transmission, provide better speed/ torque characteristics and even form part of the structure such as tucked into the wheel with brake and controller.  In hybrids add take-off. Creeping and active cruising with engine off and start and boost the engine. Crucially, in addition to becoming motor-generators, more REMs are being used per vehicle for reasons explained in the report which has in-wheel forecasts for that form of multi-motor.
 
Electric Motors for Electric Vehicles 2017-2027 reports that, increasingly, the choice of REM system benefits the selling propositions of the vehicle. Where it eliminates the need for a gearbox it can increase range 15%. Extreme power-to-weight ratio REMs are sought for most vehicles.
 
A pure-electric heavy construction vehicle with several quiet REMs appropriately placed may have vectored traction so it can cross roads without damaging them and be legally used indoors and at night time as needed. It may operate implements with improved precision and response time and create electricity instead of heat when the vehicle or the implements brake. Start-stop is smoother. Emissions, acceleration, ride, fuel consumption and autonomy of navigation and energy are improved with better REMs. Emissions are reduced or eliminated. There are chapters on how this all fits in with all vehicles, the technology being fully explained.
 
Mechanical parts are rapidly becoming replaced by electrical and electronic ones, creating many new business opportunities. For instance there is a shortage of good designers of motor controllers. The variety of EVs is becoming greater so we now have special coreless motors for the multi-billion dollar market for drones. Small agricultural robots are being contemplated for agriculture that will change completely the type of REM system required.

The report analyses 48V mild hybrid motor-generators as well because later versions of these cars, light commercial vehicles and trucks will have brief electric traction modes. They are the lowest cost way of modifying internal combustion vehicle production to stay legal under impending carbon dioxide emissions laws and they give useful fuel saving but the REM is challenging.
 
Ten important trends receive particular attention in the report are: Multifunction; Proliferation; Integration; Power increase; Voltage increase; Less metal/more electronics; New technology references; Changed location; Less cooling.
 
Harrop says it is not all confusing. Quadcopters nearly all have an out-runner PM REM and forklifts are largely hooked on asynchronous motors. Sense is made of the rest through infograms, roadmaps and forecasts.

Related Content

  • September 23, 2014
    Does ADAS create as many problems as it solves
    Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation. Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future.
  • January 30, 2012
    Selecting the right camera for safety or security
    Machine vision systems offer great variety of function and performance. Teledyne DALSA product manager Manuel Romero describes 10 key criteria to aid selection of advanced camera technology for safety or security applications. There are many ways in which machine vision systems can enhance safety and security in transportation, but the ultimate results will only be as good as the image produced. Success relies on correct selection of the camera of such systems, as the features and performance required vary
  • February 11, 2015
    Scania tests truck platooning
    Dutch Infrastructure and Environment Minister Melanie Schultz van Haegen, along with representatives of the European Commission, recently took part in test drive of truck platooning on the A28 in the Netherlands. The convoy consisted of three Scania R500 Streamline trucks; the steering was done by truck drivers, but speed and braking were controlled by the front truck using wi-fi technology. The plan is to have fully self driving trucks in the future. This method of coupled drive, based on adaptive cr
  • July 4, 2012
    Multi-wheeled vehicles brake system
    Mico has launched a full-power brake system with ABS and traction control to provide added control for multi-wheeled vehicles operated both on and off-highway. The company claims the system enhances vehicle stability while decreasing stopping distances and improving acceleration under low traction conditions. As many as eight wheels can be controlled independently of the others, which makes the system easily adaptable to four-, six- and eight-wheeled vehicles. The electronic control unit (ECU) monitors whe