Skip to main content

Concerto aims to reduce vehicle emissions

Led by the Centre for Transport Studies at Imperial College London and involving a range of industrial partners, Concerto – which stands for Co-operative Networked Concept for Emission Responsive Traffic Operations – is a three-year research programme that aims to use the sophisticated test environment of the innovITS Advance city circuit to develop next-generation technologies that reduce motor vehicle emissions.
May 17, 2012 Read time: 2 mins
RSSLed by the Centre for Transport Studies at 500 Imperial College London and involving a range of industrial partners, Concerto – which stands for Co-operative Networked Concept for Emission Responsive Traffic Operations – is a three-year research programme that aims to use the sophisticated test environment of the 67 innovITS Advance city circuit to develop next-generation technologies that reduce motor vehicle emissions.

The Concerto programme began in the autumn of 2010 and aims to build upon previous research programmes carried out by Imperial College London, drawing together, and combining the technologies that each of them has delivered. This previous work includes the development of Vehicle Performance and Emissions Monitoring System (VPEMS) technology and both local and grid based roadside emissions monitoring systems as developed in the Mobile Environmental Sensor System Across GRID Environments (MESSAGE) project. By linking these with local weather information and precise real-time location details for each vehicle, as well as using data available from the Engine Control Unit (ECU), a wide range of potential future innovations may be possible, enabling urban traffic to behave in a co-operative and actively managed manner in order to reduce emissions and hence improve local air quality.

“We were particularly keen to use the innovITS Advance city circuit for the initial testing programme of Concerto,” said Dr Robin North, Lecturer in the Centre for Transport Studies at Imperial College London. “This facility provides us with exactly the type of highly controllable, repeatable and measurable environment that we need for this form of research.”

For more information on companies in this article

Related Content

  • Improving urban traffic control in Atlanta
    January 27, 2012
    Hugh Colton, Georgia DOT details move to improve urban traffic control in the Atlanta area. With a significant proportion of traffic using freeways and toll-ways, along with a significant investment in roadway infrastructure, urban arterials are often the poor relation when it comes to ITS investment. Hitherto the primary means of Urban Traffic Control (UTC) has been the ubiquitous traffic signal. Many traffic signals still operate in a standalone mode and traffic detection is often broken, leaving the sign
  • Options abound for road weather sensing
    September 6, 2017
    Meteorological organisations invest millions in super-computers to crunch data for ever-more accurate forecasts but inherent unpredictability means that other methods of alerting drivers and road authorities to fast-changing weather and highway conditions are essential. For years, static weather sensors to measure factors such as surface water, ice or high roadway temperatures have been embedded in highways to provide such data. But that is changing.
  • Reducing incident clear up times, saving money
    January 24, 2012
    In 2007 in Atlanta, Georgia, it took over four hours to open the road after a major commercial vehicle incident. Not any more. Four years ago the Texas Transportation Institute (TTI) cited Atlanta, Georgia as the third-most congested city in the United States. Each traveller in metro Atlanta lost an incredible 57 hours a year to traffic delays, wasting 40 gallons of fuel while sitting in traffic. In 2007, it took nearly four and a half hours to open travel lanes after an average tractor-trailer incident. Th
  • Weigh in motion technology aids overweight vehicle reduction
    March 16, 2012
    Innovative use of truck weighing technology is growing as strategies aimed at reducing numbers of overweight vehicles gather momentum. Business is generally good at present in the truck weighing sector in general, and weigh-in-motion (WIM) technology in particular, according to leading suppliers of systems serving to help reduce overloading. Strategies aimed at deterring excessive truck loading – cutting damage to road networks and risks to safety – vary considerably worldwide, with some governments draggin