Skip to main content

Concerto aims to reduce vehicle emissions

Led by the Centre for Transport Studies at Imperial College London and involving a range of industrial partners, Concerto – which stands for Co-operative Networked Concept for Emission Responsive Traffic Operations – is a three-year research programme that aims to use the sophisticated test environment of the innovITS Advance city circuit to develop next-generation technologies that reduce motor vehicle emissions.
May 17, 2012 Read time: 2 mins
RSSLed by the Centre for Transport Studies at 500 Imperial College London and involving a range of industrial partners, Concerto – which stands for Co-operative Networked Concept for Emission Responsive Traffic Operations – is a three-year research programme that aims to use the sophisticated test environment of the 67 innovITS Advance city circuit to develop next-generation technologies that reduce motor vehicle emissions.

The Concerto programme began in the autumn of 2010 and aims to build upon previous research programmes carried out by Imperial College London, drawing together, and combining the technologies that each of them has delivered. This previous work includes the development of Vehicle Performance and Emissions Monitoring System (VPEMS) technology and both local and grid based roadside emissions monitoring systems as developed in the Mobile Environmental Sensor System Across GRID Environments (MESSAGE) project. By linking these with local weather information and precise real-time location details for each vehicle, as well as using data available from the Engine Control Unit (ECU), a wide range of potential future innovations may be possible, enabling urban traffic to behave in a co-operative and actively managed manner in order to reduce emissions and hence improve local air quality.

“We were particularly keen to use the innovITS Advance city circuit for the initial testing programme of Concerto,” said Dr Robin North, Lecturer in the Centre for Transport Studies at Imperial College London. “This facility provides us with exactly the type of highly controllable, repeatable and measurable environment that we need for this form of research.”

For more information on companies in this article

Related Content

  • Navtech Radar and Vysionics ITS announce strategic partnership
    October 24, 2012
    Navtech Radar and Vysionics ITS are to enter into a strategic partnership that will combine Navtech’s expertise in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based Automatic Number Plate Recognition (ANPR) and average speed measurement competencies.Navtech Radar and Vysionics ITS are to enter into a strategic partnership that will combine Navtech’s expertise in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based Automatic Number Plate
  • NODES toolbox ‘offers keys to better transport interchanges’
    September 24, 2015
    The three-year NODES (New Tools for the Design and Operation of Urban Transport Interchanges) project has came to a close and the project findings are said to offer transport practitioners practical steps to build better interchanges. Co-funded by the Seventh Framework Programme and co-ordinated by International Association of Public Transport (UITP), NODES brings together 17 partners representing local government administrations, public transport operators, as well as research centres and European assoc
  • Variable message signs continue to deliver travel information
    February 2, 2012
    Arguably the 'face' of ITS, variable message signs are far from being a passing solution
  • Austria’s answer to temporary traffic problems
    December 22, 2015
    ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project. Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during