Skip to main content

Compass IoT CV data puts heat on UK motorways

Purdue University collaboration looks at congestion and corridor management
By Adam Hill February 17, 2025 Read time: 2 mins
A section of the UK's M4 motorway (© Felix Bensman | Dreamstime.com)

Connected vehicle (CV) data from Compass IoT is being used by Purdue University to visualise travel speeds, traffic flow and bottlenecks on motorways in the UK.

The US university has developed speed heatmaps to understand traffic flow, congestion and corridor management.

These maps enable transport agencies, local councils and national highway authorities to better understand speed variations, congestion patterns, and traffic pinch points, supporting data-driven decision-making to improve network performance - including improving incident response.

Purdue speed heatmap using Compass connected vehicle data visualising overnight M5 closures

They also provide insights into when and where closures occur by visually identifying data gaps.

The research has been led by Professor Darcy Bullock, whose expertise is the use of CV data for traffic management.

"Applying connected vehicle data to UK motorways allows us to analyse congestion and speed fluctuations with a level of detail that traditional methods simply can’t provide," said Compass general manager Marinos Tsiplakis. 

"Partnering with universities like Purdue enables us to combine real-world vehicle movement data with globally recognised research expertise to help authorities optimise their road networks."

The project leveraged passively-collected vehicle trajectory data for December 2024 to analyse and visualise travel speeds across key UK corridors, including the M4 and M5.

This showed, for example, the effects of motorway closure following a crash on the M4 on 12 December from 4.30am to 8pm: the maximum queue length shown on the heatmap was approximately 5-6km.

Overnight closures - part of National Highways' resurfacing scheme - on the northbound M5 from 9pm to 6am from Monday to Thursday are shown by white gaps in the heatmaps (above). The gaps indicate no vehicles travelled through that section of road for that period.

Bullock was interviewed on Compass' Byte Size podcast to discuss how connected vehicle data can help authorities to improve performance, from real-time congestion analysis to long-term corridor planning strategies.

For more information on companies in this article

Related Content

  • PODCAST: Will low-emission zones discourage driving?
    November 27, 2023
    ITS editor Adam Hill talks to Paul Comfort on this episode of Transit Unplugged
  • Intersection monitoring from video using 3D reconstruction
    March 9, 2016
    Researchers Yuting Yang, Camillo Taylor and Daniel Lee have developed a system to turn surveillance cameras into traffic counters. Traffic information can be collected from existing inexpensive roadside cameras but extracting it often entails manual work or costly commercial software. Against this background the Delaware Valley Regional Planning Commission (DVRPC) was looking for an efficient and user-friendly solution to extract traffic information from videos captured from road intersections.
  • Bronx benefits from mesoscopic-microscopic modelling
    January 7, 2014
    Michael Marsico, Andrew Weeks, Keir Opie and Murat Ayçin explain the application of hybrid traffic simulation to a planning study in New York City. Traffic modelling, particularly mesoscopic-microscopic hybrid simulation, has played a key role in planning for the future of one of America's shortest interstates, the 1.3-mile Sheridan Expressway. New York City has just completed a two-year, interagency study federally funded by a TIGER II grant on how to improve the Sheridan Expressway and its surroundi
  • EU Compass4D project begins work
    January 30, 2013
    The new EU co-funded project Compass4D recently launched by Ertico-ITS Europe is designed to prove the benefits of cooperative systems and deploy services for road users to increase road safety and energy efficiency, while reducing the level of congestion in road transport. Compass4D target users are drivers of buses, emergency vehicles, trucks, taxis, electric vehicles and private cars. They all need information to make their driving safer, less stressful and more energy efficient. As a consequence, bus dr