Skip to main content

Cognitive Technologies to develop autonomous tram in Russia

Cognitive Technologies has joined forces with Russian manufacturer PC Transport Systems to deploy an autonomous tram on the streets of Moscow by 2022. Cognitive says that its simplified system means autonomous trams will appear on public roads much earlier than self-driving cars. The company claims its system will detect vehicle and other trams, traffic lights, pedestrians, tram and bus stops, railway and switches and obstacles. Also, the technology will allow the tram to stop in front of obstacles a
February 14, 2019 Read time: 2 mins

Cognitive Technologies has joined forces with Russian manufacturer PC Transport Systems to deploy an autonomous tram on the streets of Moscow by 2022.

Cognitive says that its simplified system means autonomous trams will appear on public roads much earlier than self-driving cars.
 
The company claims its system will detect vehicle and other trams, traffic lights, pedestrians, tram and bus stops, railway and switches and obstacles. Also, the technology will allow the tram to stop in front of obstacles and maintain a safe distance to the cars ahead, accelerate and stop.

The trams will feature a combination of sensors which include 20 video cameras and up to ten radars to help detect road scene objects at night as well as in rain, fog and snowy conditions.
 
Olga Uskova, president of Cognitive, says the company’s low-level data fusion technology allows the computer vision model to use the combined raw data coming from cameras and radars to provide a better understanding of the road scene.

“Cameras, for example, correctly recognise objects in 80% of cases, additional data from radar raises the detection accuracy to 99% and higher,” Uskova adds.

The trams will use GPS sensors and will use high-precision cartography along its route.

Initially, an intelligent control system will serve as an active driving assistant in dangerous situations. A second stage test will follow in which an operator will remain in the cabin as a backup driver.

During the next two months, autonomous tram tests with the operator in the cabin will take place in closed facilities which will then be followed by a trail in Moscow.

Related Content

  • Waymo redesigns fifth generation hardware sensor suite
    March 16, 2020
    Waymo has redesigned its fifth-generation hardware sensor suite with the aim of enabling the scaled deployment of Waymo Driver autonomous vehicles (AVs).
  • Ford equips autonomous cars with night vision
    April 13, 2016
    Ford recently conducted tests at its Arizona proving ground to determine how autonomous cars could navigate at night without headlights. According to Ford, it’s an important development, in that it shows that even without cameras, which rely on light, Ford’s LiDAR, working with the car’s virtual driver software, is robust enough to steer around winding roads. While it’s ideal to have all three modes of sensors, radar, cameras and LiDAR, the latter can function independently on roads without stoplights.
  • Getting C/AVs from pipedream to reality
    October 17, 2019
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th
  • Here’s HD AV map prepared for 5G
    June 17, 2019
    The emergence of 5G may not be necessary to provide a high-definition map for autonomous driving, says Matt Preyss from Here Technologies. Ben Spencer asks why 5G is a hot topic worldwide, with the potential for faster transfer of information eagerly awaited by those convinced that it will be a game-changer for the ITS industry. High-definition (HD) maps are essential to allow autonomous vehicles (AVs) to understand their environment, and operate safely within it in relation to other road users and p