Skip to main content

Cognitive Technologies to develop autonomous tram in Russia

Cognitive Technologies has joined forces with Russian manufacturer PC Transport Systems to deploy an autonomous tram on the streets of Moscow by 2022. Cognitive says that its simplified system means autonomous trams will appear on public roads much earlier than self-driving cars. The company claims its system will detect vehicle and other trams, traffic lights, pedestrians, tram and bus stops, railway and switches and obstacles. Also, the technology will allow the tram to stop in front of obstacles a
February 14, 2019 Read time: 2 mins

Cognitive Technologies has joined forces with Russian manufacturer PC Transport Systems to deploy an autonomous tram on the streets of Moscow by 2022.

Cognitive says that its simplified system means autonomous trams will appear on public roads much earlier than self-driving cars.
 
The company claims its system will detect vehicle and other trams, traffic lights, pedestrians, tram and bus stops, railway and switches and obstacles. Also, the technology will allow the tram to stop in front of obstacles and maintain a safe distance to the cars ahead, accelerate and stop.

The trams will feature a combination of sensors which include 20 video cameras and up to ten radars to help detect road scene objects at night as well as in rain, fog and snowy conditions.
 
Olga Uskova, president of Cognitive, says the company’s low-level data fusion technology allows the computer vision model to use the combined raw data coming from cameras and radars to provide a better understanding of the road scene.

“Cameras, for example, correctly recognise objects in 80% of cases, additional data from radar raises the detection accuracy to 99% and higher,” Uskova adds.

The trams will use GPS sensors and will use high-precision cartography along its route.

Initially, an intelligent control system will serve as an active driving assistant in dangerous situations. A second stage test will follow in which an operator will remain in the cabin as a backup driver.

During the next two months, autonomous tram tests with the operator in the cabin will take place in closed facilities which will then be followed by a trail in Moscow.

Related Content

  • New York helps blind riders find buses
    November 3, 2020
    NaviLens app can detect QR-style codes on bus stops up to 40 feet away 
  • Navtech Radar and Vysionics ITS announce strategic partnership
    October 24, 2012
    Navtech Radar and Vysionics ITS are to enter into a strategic partnership that will combine Navtech’s expertise in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based Automatic Number Plate Recognition (ANPR) and average speed measurement competencies.Navtech Radar and Vysionics ITS are to enter into a strategic partnership that will combine Navtech’s expertise in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based Automatic Number Plate
  • Joining the dots: four ways to help cities make the connection
    May 18, 2018
    Smoothing the path to connected transportation systems in urban areas all round the world takes a lot of planning: Cisco’s Kyle Connor lays out the four key areas on which he thinks cities should focus. Forward-thinking cities around the world are exploring innovative, new ways to leverage the Internet of Things (IoT) and related technologies to create more connected and efficient transportation systems. Through greater digitisation and connectivity, cities can optimise public transit routes, reduce
  • Uber’s self-driving cars resume trials in Pittsburgh in manual mode
    July 27, 2018
    Uber’s self-driving cars are being manually driven on public roads in Pittsburgh after a fatal crash which prompted the company to pull out of its testing programme in North America. The company is trialling new safeguards which it says will improve vehicle fleet safety and performance. According to a report by Medium, Eric Meyhofer, head of Uber Advanced Technologies, says: “While we are eager to resume testing of our self-driving system, we see manual driving as an important first step in piloting thes