Skip to main content

Breakthrough battery could revolutionise cost, range and safety of electric vehicles

Envia Systems, based in California, has announced test results that verify the company’s next-generation rechargeable battery has achieved the highest recorded energy density of 400 Watt-hours/kilogram (Wh/kg) for a rechargeable lithium-ion cell. When commercialised, this 400 Wh/kg battery is expected to slash the price of a 500km range electric vehicle by cutting the cost of the battery pack by more than 50 per cent. The testing of Envia’s next-generation lithium-ion battery was performed by the Electroche
March 23, 2012 Read time: 2 mins
4252 Envia Systems, based in California, has announced test results that verify the company’s next-generation rechargeable battery has achieved the highest recorded energy density of 400 Watt-hours/kilogram (Wh/kg) for a rechargeable lithium-ion cell. When commercialised, this 400 Wh/kg battery is expected to slash the price of a 500km range electric vehicle by cutting the cost of the battery pack by more than 50 per cent.

The testing of Envia’s next-generation lithium-ion battery was performed by the Electrochemical Power Systems Department at the 4253 Naval Surface Warfare Center (NSWC) in Crane, Indiana, under the sponsorship of ARPA-E. Tests at various cycling rates at NSWC confirmed that Envia’s automotive battery cell demonstrated energy density between 378-418 Wh/kg for rates between C/3 to C/10 for a 45 Amp-hour (C/3) cell. Similar cells have been cycling in Envia’s test labs for over 300 cycles. NSWC Crane will also test these cells to validate cycling performance.

“Since the inception of Envia, our product team has worked tirelessly and logged over 25 million test channel hours to optimally develop each of the active components of the battery: Envia's proprietary Si-C anode, HCMR cathode and EHV electrolyte," said Dr. Sujeet Kumar, Envia Systems co-founder, president & CTO.  “Rather than just a proof-of-concept of energy density, I am pleased that our team was successful in actually delivering 400 Wh/kg automotive grade 45 Ah lithium-ion rechargeable cells.”

“Envia’s new battery technology represents exactly the kind of innovation and breakthroughs that ARPA-E is looking for from the American research and development community,” said ARPA-E director Arun Majumdar.  “We hope that this low-cost and high-density battery technology enables widespread adoption of electric vehicles across the country and around the world.”

Envia was awarded grants by both the 4258 Advanced Research Projects Agency-Energy (ARPA-E) and the 4259 California Energy Commission in 2010 to develop high energy density batteries for electric vehicles. 4248 General Motors Ventures participated in an equity investment round of US$17 million in 2011.

Related Content

  • Panasonic to supply battery cells for Ford’s hybrid and PHEVs
    March 22, 2012
    Panasonic Corporation has announced that it will supply lithium-ion battery cells for Ford Motor Company's hybrid and plug-in hybrid electricvehicles (PHEVs). The upcoming models of the Ford Fusion Hybrid Electric and C-Max Hybrid Electric as well as the Ford Fusion Energi and C-Max Energi plug-in hybrids will use Panasonic battery cells in combination with a gasoline engine
  • Long-range electric vehicles ‘set to gain popularity globally’
    April 22, 2015
    According to new analysis from Frost & Sullivan, the global electric vehicles (EV) market has made huge progress, with more than 55 models now available globally. Currently, over 70 per cent of the models on the market are battery EVs (BEVs) and approximately 25 per cent are plug-in hybrid EVs (PHEVs). Nevertheless, the number of PHEVs is likely to increase over the next three to four years. The market will see greater demand for longer-range vehicles that allow customers to drive up to and past the pure EV
  • California aims to generate electric power from traffic congestion
    April 20, 2017
    California is planning a US$2.3 million initiative that will generate electrical power from traffic, according to the San Francisco Chronicle. The California Energy Commission recently voted to fund two piezoelectricity projects, which convert pressure into power. One pilot will test a 200-foot-long piece of asphalt on UC-Merced’s campus, which is designing a 200-foot stretch of asphalt that will be sowed with inch-wide piezoelectric generators, which will be stacked within arrays below the road where it is
  • Technology overcomes EV range challenges
    February 4, 2013
    According to new analysis from Frost and Sullivan, Strategic Analysis of Global Market for Range Extenders, major challenges currently faced by the electric vehicle (EV) revolve around the inability to provide long range in a single charge as well as the lengthy charging times that can vary from thirty minutes to ten hours. This has limited the number of adopters for EVs. Range extender technology overcomes these challenges, strategically positioned to make strong gains in the EV market. Currently, the mark