Skip to main content

Big data helps San Diego optimise public transit

San Diego Metropolitan Transit System (MTS) has turned to Cubic’s big data subsidiary Urban Insights to make better use of its data, according to a report in Information Week. The agency has disparate data sources, including a smart-card payment system, GPS-based automatic vehicle location devices on buses, automatic passenger counters on trolleys, and extensive route and schedule information formatted in the general transit feed specification (GTFS) format developed by Google in 2006. "We look at all
July 14, 2014 Read time: 3 mins
1986 San Diego Metropolitan Transit System (MTS) has turned to 378 Cubic’s big data subsidiary Urban Insights to make better use of its data, according to a report in Information Week.

The agency has disparate data sources, including a smart-card payment system, GPS-based automatic vehicle location devices on buses, automatic passenger counters on trolleys, and extensive route and schedule information formatted in the general transit feed specification (GTFS) format developed by Google in 2006.

"We look at all these data sources independently, and they help us improve performance, but we haven't been able to make correlations among the various data sources," said Sharon Cooney, MTS chief of staff.

Disparate data sources are all too common in transportation projects, so Urban Insights has developed a cloud-based analytics modelling platform built on Hadoop open source software.

"MTS wanted not just a one-off study of transit usage but a reusable process of integrating data sources and producing insights so planners can determine when travellers are not using the network as anticipated," said Wade Rosado, Urban Insights' director of analytics. "We have to align and make sense of the data to unravel the mystery of how people are using the system."

Passenger analysis in San Diego is complicated by the fact that the tram system operates on a barrier-less honour system, where passengers are expected to tap their smart cards on fare validators as they enter the platform. Fare collection on buses is controlled by the driver, but there is no connection to vehicle locators to show how many passengers boarded at which stop. Both factors make it difficult to track where people start and end their journey and where they transfer from route to route or from trams to buses.

Urban Insights and MTS began by analysing tapping patterns at the tram platforms – looking at the level of passengers versus fare validation. The analysis began with the GTFS data on when specific trams are expected to arrive where on a route.  This was correlated to the tram platform validation data. To get a complete picture of ridership, Urban Insights added data from the automatic passenger counters, which is time stamped, and correlated it with the GTFS scheduling data.

"Now we can see how many boarded versus how many tapped," said Cooney. "The only other way we could do that previously was through handheld units that officers use to spot-check who tapped and who didn't, but that's only a small sampling of overall system usage."

Urban Insights and MTS are currently working on aligning and correlating all available data to study how these route changes have impacted various point-to-point travel times, transfer points, ridership levels, and, with added customer survey data, overall rider satisfaction levels.

The outputs include blended data sets, reports, and sophisticated geospatial visualizations (as shown in the image above). These maps show the quantity of transfers made at particular locations with different size rings. Services offered are depicted by shapes, with sizes and colours indicating different attributes of those services. The visualisations will help MTS determine where and whether transfer activity is inconsistent with the service levels offered.

For more information on companies in this article

Related Content

  • Paris air pollution: back with a vengeance
    June 30, 2020
    Analysis of French capital's air quality finds it worsening quickly post-lockdown
  • System predicts train delays and informs response
    February 25, 2016
    David Crawford looks into the near-term future for Stockholm’s rail commuters. Swedish rail operator Stockholmståg, which runs commuter services in and around the country’s capital, is claiming a world first with the introduction of its automated Pendelprognosen (commuter prognosis) service. Developed to enable the prediction of delays as much as two hours before they are likely to occur, this offers the operator the scope for much earlier remedial action than previously - for example by filling in the expe
  • e-Call emergency service doesn't go far enough
    January 30, 2012
    eCall misses the point and is only a tacit acknowledgement that the road safety issue has not yet been adequately addressed, according to FEMA's Aline Delhaye. According to the Federation of European Motorcyclists' Associations (FEMA), the European Commission's (EC's) ambitions for eCall implementation are premature and fail to take account of all road users' needs or of technological progress elsewhere.
  • Shaking up the taxi market with smarter ride requests
    February 24, 2016
    Timothy Compston looks at the rise of Uber and ride request mobile apps. There is little doubt that the advent of Uber has come as major shock to established taxi operators and has caused regulators, cities and DOTs to rethink current regulations so they can keep pace with the changing dynamics of the marketplace.