Skip to main content

Battery vehicle ‘now viable for very long distances’

The Tesla 3 gets nearly double the range of the Nissan Leaf by using nearly double the amount of battery but engineers are using a multitude of work rounds to do better: aerodynamics, light-weighting even including structural electronics where dumb structure is replaced by supercapacitors or solid state batteries. Add more efficient motors and powertrain, says Dr Peter Harrop, chairman of IDTechEx Research in its report Industrial and Commercial Electric Vehicles on Land 2016-2026. He goes on to say that
June 23, 2016 Read time: 2 mins
The Tesla 3 gets nearly double the range of the 838 Nissan Leaf by using nearly double the amount of battery but engineers are using a multitude of work rounds to do better: aerodynamics, light-weighting even including structural electronics where dumb structure is replaced by supercapacitors or solid state batteries. Add more efficient motors and powertrain, says Dr Peter Harrop, chairman of 6582 IDTechEx Research in its report Industrial and Commercial Electric Vehicles on Land 2016-2026.

He goes on to say that fuel cell hybrids retain the cachet of most expensive solution with a long on-road charging time if you factor in the time to find that rarity, the hydrogen charger. Very long distance with large hydrogen tanks is impracticable.

However, IDTechEx believes that there is an excellent solution being proved for the long distance battery vehicle, starting with trucks. The battery does not expand to an unwieldy 400kWh.

A new dynamic charging approach was presented at EVS29 Canada by Patrik Akerman of 189 Siemens. Dynamic charging is a term most often applied to coils in the road that charge the vehicle as it goes along but, as he pointed out, this has severe difficulties with roads wearing out early, safety and damage from vehicles and roadworks. Height variations, snow, dirt, cost and other problems have been cited by others. Following a study, Siemens has decided not to work on this. Akerman favours the elegant, affordable solution of intermittent overhead catenary at a mere Euros 2.2 million per kilometre for charging trucks on the move which means that they can still overtake (the old trolley buses could not).

The whole of Germany could be served in this way with only 400 km of catenary. The German authorities find it feasible and desirable. There are trials now in several other countries. Cost is a fraction of fuel cell and other alternatives: installation is easy. IDTechEx finds that inductive charging is great for the car at home and premium cars are adopting it.

IDTechEx believes that fuel cell vehicles will succeed in niche markets when attractive unique selling propositions are identified.

Related Content

  • June 22, 2016
    World's first eHighway opens in Sweden
    Today sees the opening of the world's first eHighway in Sweden. For the next two years, a Siemens catenary system for trucks will be tested on a two-kilometre stretch of the E16 highway north of Stockholm. The trial will use two diesel hybrid vehicles manufactured by Scania and adapted, in collaboration with Siemens, to operate under the catenary system The core of the system is an intelligent pantograph combined with a hybrid drive system. A sensor system enables the pantograph to connect to and disconn
  • February 19, 2015
    Report forecasts rapidly changing market for drones
    A new IDTechEx report, Electric Drones: Unmanned Aerial Vehicles UAVs 2015-2025, examines the market for drones or unmanned aerial vehicles (UAVs), saying that most of the market value today lies in military applications, both for electric and - the big money - non-electric versions. Nonetheless, small UAVs are increasing in sales fastest and that is primarily down to non-military applications. From 2026, civil uses will greatly exceed military in market value. The report forecasts it all but concentrates o
  • November 8, 2016
    Solid-state batteries– a better, longer-lasting class of Li-ion electrolytes?
    In 2016, Li-ion batteries (LIB) have been on the market, virtually unchanged, for the last 25 years. While this anniversary marks and underscores their worldwide success and diffusion in consumer electronics and, more recently, electric vehicles (EV), the underlying technology begins to show its limitations in terms of safety, performance, form factor and cost, according to a new research report by IDTechEx Research.
  • December 8, 2014
    EU to boost long distance travel for fuel cell cars
    The EU's TEN-T programme will invest almost US$4.3 million in studies preparing a European network of hydrogen infrastructure for transport. The network is expected to enhance the use of fuel cell vehicles in Europe leading to cuts in overall transport emissions. The uptake of fuel cell cars, zero emission vehicles that run on electricity powered by hydrogen, depends on the availability of refuelling infrastructure on the main European roads. This project is the second part of a larger action aiming