Skip to main content

Algorithm ‘can predict train delays two hours ahead’

A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm. The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to in
September 11, 2015 Read time: 2 mins
A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm.

The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to inform passengers.

Its developers claim the algorithm can be adapted for use on other public transportation systems in the future.

“We have built a prediction model using big data that lets us visualise the entire commuter train system two hours into the future. We can now forecast disruptions in our service and our traffic control centre can prevent the ripple effects that actually cause most delays. This is the next generation forecasting tool for the commuter train industry,” says Mikael Lindskog, communications director at Stockholmstag, the commuter train operator in Stockholm.

The algorithm works like a seismograph; when a train is delayed, it forecasts the effect of delay on the entire network by using historic data.

“The effects of one delayed train can quickly multiply within the entire train network. Today the traffic control centre analyses delays manually in order to prevent future delays. By automating the forecasting we can raise our service level significantly. The ‘commuter prognosis’ will be the first automated forecasting model of its kind. In a long time perspective it’s possible that it will change how traffic control centres all over the world work,” says Lindskog.

Related Content

  • June 14, 2018
    Keeping people on track is RATP’s raison d’etre
    In Paris, RATP Group’s autonomous Metro Line 1 is carrying 750,000 people a day across the city. Ben Spencer is invited into the control room to take a look at how the system works Paris is visited by millions of tourists each year, keen to see for themselves stunning attractions such as the Eiffel Tower, Arc de Triomphe, Notre-Dame, the Louvre, the Seine and all the rest. But while the best-known sites of the City of Light tend to be on the surface, there is a lot going on below those iconic grand boule
  • October 10, 2018
    The search for travel management's Holy Grail
    Combining accurate network estimates and forecasts with real-time information is the way to deal with traffic hot spots. Alan Dron looks at products which aim to achieve just that. Traffic management authorities have for years been trying to get ahead of the game. Instead of reacting to situations, they want to be able to head them off as they occur – or even before they happen. Finding that Holy Grail of successfully anticipating problems will save time, tension and tempers on city streets. Two new system
  • September 17, 2024
    Umovity's Christian Haas: AI in ITS is 'evolving at speed'
    The intersections between AI and ITS will shape the future of the industry. Christian U. Haas, CEO of Umovity, outlines some challenges – and looks forward to the opportunities
  • May 6, 2016
    Modelling could reduce traffic mayhem
    A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.