Skip to main content

Algorithm ‘can predict train delays two hours ahead’

A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm. The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to in
September 11, 2015 Read time: 2 mins
A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm.

The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to inform passengers.

Its developers claim the algorithm can be adapted for use on other public transportation systems in the future.

“We have built a prediction model using big data that lets us visualise the entire commuter train system two hours into the future. We can now forecast disruptions in our service and our traffic control centre can prevent the ripple effects that actually cause most delays. This is the next generation forecasting tool for the commuter train industry,” says Mikael Lindskog, communications director at Stockholmstag, the commuter train operator in Stockholm.

The algorithm works like a seismograph; when a train is delayed, it forecasts the effect of delay on the entire network by using historic data.

“The effects of one delayed train can quickly multiply within the entire train network. Today the traffic control centre analyses delays manually in order to prevent future delays. By automating the forecasting we can raise our service level significantly. The ‘commuter prognosis’ will be the first automated forecasting model of its kind. In a long time perspective it’s possible that it will change how traffic control centres all over the world work,” says Lindskog.

Related Content

  • May 30, 2024
    Simulating the effects of optimal mobility
    Simulation-based optimisation is the foundation for real-time predictive analytics when it comes to optimal traffic signal programming, explain Sunny Chakravarty of Econolite and Lorenzo Meschini of PTV Group
  • July 8, 2019
    Control rooms adapt to tech changes
    From IP-based systems to an increasing array of choice, traffic and transit management has changed a lot in the last few years. Adam Hill talks to some of the leading players in the control room business
  • May 18, 2018
    Joining the dots: four ways to help cities make the connection
    Smoothing the path to connected transportation systems in urban areas all round the world takes a lot of planning: Cisco’s Kyle Connor lays out the four key areas on which he thinks cities should focus. Forward-thinking cities around the world are exploring innovative, new ways to leverage the Internet of Things (IoT) and related technologies to create more connected and efficient transportation systems. Through greater digitisation and connectivity, cities can optimise public transit routes, reduce
  • March 9, 2016
    Intersection monitoring from video using 3D reconstruction
    Researchers Yuting Yang, Camillo Taylor and Daniel Lee have developed a system to turn surveillance cameras into traffic counters. Traffic information can be collected from existing inexpensive roadside cameras but extracting it often entails manual work or costly commercial software. Against this background the Delaware Valley Regional Planning Commission (DVRPC) was looking for an efficient and user-friendly solution to extract traffic information from videos captured from road intersections.