Skip to main content

Algorithm ‘can predict train delays two hours ahead’

A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm. The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to in
September 11, 2015 Read time: 2 mins
A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm.

The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to inform passengers.

Its developers claim the algorithm can be adapted for use on other public transportation systems in the future.

“We have built a prediction model using big data that lets us visualise the entire commuter train system two hours into the future. We can now forecast disruptions in our service and our traffic control centre can prevent the ripple effects that actually cause most delays. This is the next generation forecasting tool for the commuter train industry,” says Mikael Lindskog, communications director at Stockholmstag, the commuter train operator in Stockholm.

The algorithm works like a seismograph; when a train is delayed, it forecasts the effect of delay on the entire network by using historic data.

“The effects of one delayed train can quickly multiply within the entire train network. Today the traffic control centre analyses delays manually in order to prevent future delays. By automating the forecasting we can raise our service level significantly. The ‘commuter prognosis’ will be the first automated forecasting model of its kind. In a long time perspective it’s possible that it will change how traffic control centres all over the world work,” says Lindskog.

Related Content

  • Impact of extreme weather phenomena on European transport system
    January 23, 2012
    The VTT Technical Research Centre of Finland's Pekka Leviäkangas writes about the initial results of the EWENT project, which was set up to research the effects of severe weather on the European transport network. The European EWENT (Extreme Weather impacts on European Networks of Transport) project, financed by the European Commission under 7th Framework Programme for Research, recently issued its first Work Package (WP1) report. This is a review of extreme weather phenomena and their effects on the Europe
  • Electronic toll collection delivers efficient traffic regulation
    February 3, 2012
    Electronic tolling systems have been in use for decades now. Worldwide, steadily more and more tolling systems are being set into operation, providing efficient means for traffic regulation and financing of infrastructure. But despite this maturity enforcement is still not being given the consideration it deserves. Q-Free's Steinar Furan writes
  • Big data bonus for Dublin’s buses
    August 19, 2014
    Dublin’s smart research partnership speeds buses More than 50% of people travelling into and across the Irish capital rely on public transport, and four out of 10 these use buses meaning Dublin Bus carries some 120 million passengers a year.
  • Keeping a watching brief over traffic flows
    March 11, 2015
    Monitoring traffic flows is set to become an even bigger challengebut a revolution in camera technology can help, as Patrik Anderson explains. By 2025 almost 60% of the world’s population will live in urban areas and in those cities there will be an estimated 6.2 billion private motorised trips every day. In order to manage this level of traffic growth, traffic management centres (TMCs) will need to both increase their monitoring capabilities and be able to detect traffic problems quickly, efficiently and r