Skip to main content

Algorithm ‘can predict train delays two hours ahead’

A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm. The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to in
September 11, 2015 Read time: 2 mins
A new mathematic algorithm that can predict commuter train delays up to two hours in the future has been developed in Stockholm, Sweden, by the city’s commuter train operator, Stockholmstag, and mathematician Wilhelm Landerholm.

The ‘commuter prognosis’ uses big data to visualise the entire commuter train system two hours into the future, simultaneously calculating how the delay affects other trains in the system and automatically providing the information to traffic control centres, enabling them to inform passengers.

Its developers claim the algorithm can be adapted for use on other public transportation systems in the future.

“We have built a prediction model using big data that lets us visualise the entire commuter train system two hours into the future. We can now forecast disruptions in our service and our traffic control centre can prevent the ripple effects that actually cause most delays. This is the next generation forecasting tool for the commuter train industry,” says Mikael Lindskog, communications director at Stockholmstag, the commuter train operator in Stockholm.

The algorithm works like a seismograph; when a train is delayed, it forecasts the effect of delay on the entire network by using historic data.

“The effects of one delayed train can quickly multiply within the entire train network. Today the traffic control centre analyses delays manually in order to prevent future delays. By automating the forecasting we can raise our service level significantly. The ‘commuter prognosis’ will be the first automated forecasting model of its kind. In a long time perspective it’s possible that it will change how traffic control centres all over the world work,” says Lindskog.

Related Content

  • January 25, 2012
    US state of the art workzone safety
    The Texas Transportation Institute's Jerry Ullman talks about the state of the art in work zone safety in the US. Work zones are places where, perhaps more than anywhere else on the road network, mobility and safety are strongly linked. Historically, field crews and contractors wanted vehicles in work zones to be moving as slowly as possible, assuming that made conditions the safest for work crews. We are though starting to see a shift in such thinking with the realisation that excessive delays or slow-down
  • February 3, 2012
    Germany's approach to adaptive traffic control
    Jürgen Mück, Siemens AG, describes the three-level approach taken in Germany to adaptive network control
  • December 18, 2024
    Huawei opens door to new opportunities in transport & logistics
    By addressing the four key elements of a transportation network’s composition with a state-of-the-art digital solution, Huawei is bringing significant performance uplifts to all aspects of railway operations
  • January 7, 2013
    Reflecting on five years of important ITS progress
    Former head of the ITS Joint Program Office Shelley Row has passed the baton to a new director. Now working as an independent consultant, here she reflects on her five years at the helm of the JPO and what the future may hold for ITS in the US. During a mid-morning in Paris earlier this year, having just landed, I decided to take a trip on the city’s subway (Paris’ underground metro) into the city centre. A family with a small boy – about nine years old – boarded the same train. They were American and we st