Skip to main content

The afterlife of spent electric vehicle batteries

Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.
April 20, 2012 Read time: 2 mins
Earlier this year, 948 General Motors signed a definitive agreement with 4540 ABB Group to identify joint research and development projects that would reuse 1960 Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted.

Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.

This week, GM and ABB demonstrated an energy storage system that combines a proven electric vehicle battery technology and a proven grid-tied electric power inverter. The two companies are building a prototype that could lead to Volt battery packs storing energy, including renewable wind and solar energy, and feeding it back to the grid.

They say the system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts.
Using Volt battery cells, the ABB and GM team is building a prototype system for 25-kilowatt/50-kWh applications, about the same power consumption of five US homes or small retail and industrial facilities.

ABB has determined its existing power quality filter (PQF) inverter can be used to charge and discharge the Volt battery pack to take full advantage of the system and enable utilities to reduce the cost of peak load conditions. The system can also reduce utilities' needs for power control, protection and additional monitoring equipment. The team will soon test the system for back-up power applications.

"Our tests so far have shown the viability of the GM-ABB solution in the laboratory and they have provided valuable experience to overcome the technical challenges," said Pablo Rosenfeld, ABB's programme manager for Distributed Energy Storage Medium Voltage Power Products. "We are making plans now for the next major step – testing a larger prototype on an actual electric distribution system,"  he said.

For more information on companies in this article

Related Content

  • On a WIM – a global view of weigh in motion
    May 25, 2016
    Q-Free’s Andrew Lees looks at regional characteristics and technology trends in the global Weigh-In-Motion market. The principles of Weigh-In-Motion (WIM) are well established. Data derived from vehicles passing over in-ground sensors can be interpreted for vehicle classification (axle counts and spacing) and positive identification (especially when linked to image capture) applications as well as to derive individual axle and gross vehicle weight (GVW).
  • All aboard Australia’s newest electric bus
    July 8, 2015
    Working in partnership with BusTech, Swinburne University of Technology has helped develop the first electric bus to be designed, engineered and manufactured in Australia. The first concept demonstrator bus was unveiled at the Maintenance Conference and Bus Expo in Melbourne. According to Pro vice-chancellor, International Research Engagement, Professor Ajay Kapoor, the research and development has involved solving the challenges of integrating electric vehicle technologies using computer-aided engi
  • Cimcon Lighting awarded Elexon approval
    April 9, 2013
    The LightingGale centralised street light management system developed by intelligent street light management solutions provider Cimcon Lighting has been approved by the UK’s Supplier Volume Allocation Group (SVG) under the UK’s Balancing and Settlement Code (BSC) for use in Settlement. Administered by Elexon, the BSC defines and governs the “balancing mechanism and imbalance settlement processes” for electricity in the Great Britain, and is vital to the successful operation of Great Britain’s electricity tr
  • Hyperloop: from sci-fi to transport policy
    April 16, 2020
    The future is here. While it has long looked like something from a sci-fi movie, Graham Anderson investigates a technology whose time might have come.