Skip to main content

The afterlife of spent electric vehicle batteries

Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.
April 20, 2012 Read time: 2 mins
Earlier this year, 948 General Motors signed a definitive agreement with 4540 ABB Group to identify joint research and development projects that would reuse 1960 Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted.

Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.

This week, GM and ABB demonstrated an energy storage system that combines a proven electric vehicle battery technology and a proven grid-tied electric power inverter. The two companies are building a prototype that could lead to Volt battery packs storing energy, including renewable wind and solar energy, and feeding it back to the grid.

They say the system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts.
Using Volt battery cells, the ABB and GM team is building a prototype system for 25-kilowatt/50-kWh applications, about the same power consumption of five US homes or small retail and industrial facilities.

ABB has determined its existing power quality filter (PQF) inverter can be used to charge and discharge the Volt battery pack to take full advantage of the system and enable utilities to reduce the cost of peak load conditions. The system can also reduce utilities' needs for power control, protection and additional monitoring equipment. The team will soon test the system for back-up power applications.

"Our tests so far have shown the viability of the GM-ABB solution in the laboratory and they have provided valuable experience to overcome the technical challenges," said Pablo Rosenfeld, ABB's programme manager for Distributed Energy Storage Medium Voltage Power Products. "We are making plans now for the next major step – testing a larger prototype on an actual electric distribution system,"  he said.

For more information on companies in this article

Related Content

  • Mounting benefits of dynamic tolling project
    January 30, 2012
    Wisconsin's four-year HOT lanes pilot project, launched in May 2008, cost US$18.8 million to construct. Halfway into the project, which uses variably priced, or dynamic, tolling to improve highway efficiency, the benefits are mounting. The problem was obvious, and frustrating, to anyone who ever sat in bumper-to-bumper traffic on State Route 167 and watched a lone car whiz by every 20 seconds or so in the carpool lane. But for planners at the Washington State Department of Transportation, the conundrum was
  • Norwegian study finds electric cars 'pose environmental threat'
    October 5, 2012
    According to a study by the Norwegian University of Science and Technology, electric cars might pollute much more than petrol or diesel-powered cars. Researchers found greenhouse gas emissions rose dramatically if coal was used to produce the electricity. Electric car factories also emitted more toxic waste than conventional car factories, claims their report in the Journal of Industrial Energy. However, in some cases electric cars still made sense, the researchers said.
  • At-home charging for new Fiat 500e
    August 22, 2013
    Fiat has selected AeroVironment as its preferred provider of home charging stations and installations for its all-electric Fiat 500e. The 2013 Fiat 500e features a 24-kWh Lithium-ion battery that will allow drivers to travel an estimated 108 miles and uses an industry-standard SAE J1772 recharge connector. The 240-volt refuelling station will charge the car in four hours or less versus the approximate twenty hours required using a standard 120-volt charging cable. AeroVironment’s UL-listed station can
  • ABB installs 15 fast chargers for electric vehicles, Iceland
    November 8, 2017
    ON Power, a part of Reykjavik Energy, has signed a contract with ABB for the delivery and installation of 15 Terra multi-standard DC chargers type 53 CJG at various points along Iceland’s main highway. It is part of a plan to expand an e-mobility strategy by increasing the availability of charging stations along central locations of the country’s national highway. The fast chargers can charge an electric vehicle (EV) between 15-30 minutes. It features touch screen displays and graphic visualization