Skip to main content

The afterlife of spent electric vehicle batteries

Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.
April 20, 2012 Read time: 2 mins
Earlier this year, 948 General Motors signed a definitive agreement with 4540 ABB Group to identify joint research and development projects that would reuse 1960 Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted.

Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.

This week, GM and ABB demonstrated an energy storage system that combines a proven electric vehicle battery technology and a proven grid-tied electric power inverter. The two companies are building a prototype that could lead to Volt battery packs storing energy, including renewable wind and solar energy, and feeding it back to the grid.

They say the system could store electricity from the grid during times of low usage to be used during periods of peak demand, saving customers and utilities money. The battery packs could also be used as back-up power sources during outages and brownouts.
Using Volt battery cells, the ABB and GM team is building a prototype system for 25-kilowatt/50-kWh applications, about the same power consumption of five US homes or small retail and industrial facilities.

ABB has determined its existing power quality filter (PQF) inverter can be used to charge and discharge the Volt battery pack to take full advantage of the system and enable utilities to reduce the cost of peak load conditions. The system can also reduce utilities' needs for power control, protection and additional monitoring equipment. The team will soon test the system for back-up power applications.

"Our tests so far have shown the viability of the GM-ABB solution in the laboratory and they have provided valuable experience to overcome the technical challenges," said Pablo Rosenfeld, ABB's programme manager for Distributed Energy Storage Medium Voltage Power Products. "We are making plans now for the next major step – testing a larger prototype on an actual electric distribution system,"  he said.

For more information on companies in this article

Related Content

  • ABB adds AC Wallboxes to portfolio of charging solutions
    March 23, 2018
    ABB has added alternative current (AC) Wallboxes to its portfolio of charging solutions. The systems can be installed in homes and businesses and are said to be ideally suited for companies that want to provide overnight charging facilities for clients that work in sectors such as hospitality. The products are manufactured with a robust all-weather enclosure for indoor and outdoor use and are available in different versions, offering 4.6 and 11 kW AC charging as well as 22 kW AC 3-phase charging. The
  • Full analysis: Massive US EV infrastructure plan
    February 21, 2023
    The White House has announced a huge financial boost, new standards, and major progress for a made-in-America national network of EV chargers to support the future of US EV charging
  • Fleet tracking system delivers cost and customer benefits
    May 22, 2012
    Introduction of a fleet tracking system has provided expected headline benefits. But it is the intangibles that have been most valuable Crescent Electric Supply Company (CESC) was founded in 1919 and is one of the largest independent distributors of electrical hardware and supplies in the US. Based in East Dubuque, Illinois, the company has 120 distribution facilities in 27 states, serving contractors, original equipment manufacturers (OEM) and the maintenance, repair and operations (MRO) needs of commercia
  • Cost-effective alternatives to traditional loops
    February 1, 2012
    Traffic signal control is a mainstay of urban congestion management. Despite advances in vehicle detection sensors, inductive loops, which operate by using a magnetic field to detect the metal components in vehicles, are still the most common enabler for intelligent signalised junctions.