Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

Related Content

  • February 12, 2018
    Inrix: Congestion cost UK motorists over £37bn in 2017
    The UK is the third most congested country in Europe and the tenth most congested country in the world where costs amounted to more than £37.7bn ($52.2bn) for all drivers in 2017, an average of £1,168 ($2,233) per person. These findings come from Inrix’s annual Global Traffic Scorecard which analysed and ranked the impact of traffic congestion in 1,360 cities across 38 countries. London remained the UK’s most congested major city for the tenth consecutive year as drivers spent an average of 74 hours in
  • January 31, 2012
    State of the art ITS technology for Doha tunnel management system
    Husam Musharbash, Traffic Tech Group, talks about tunnel management system implementation on the new route between Doha and the soon-to-open New Doha International Airport. The new Ras Abu Aboud Tunnel in Qatar, which opened to traffic in January of this year, will serve the New Doha International Airport once the latter opens in 2011.
  • October 17, 2016
    Two seconds – the difference between life and death
    Professor Donald Fisher has spent 15 years identifying factors that increase the crash risk of novice and older drivers. His findings highlight the difference between living and dying, Colin Sowman reports.
  • October 18, 2016
    The Dutch revolution in smart EV charging
    By turning itself into one huge Living Lab for Smart Charging of electric vehicles, the Netherlands aims to become the international frontrunner for smart charging EVs, using them to store peak solar and wind power production. Already 325 municipalities, including Amsterdam, Rotterdam, Utrecht and The Hague, have joined the Dutch Living Lab Smart Charging project, representing 80 per cent of all public charging stations. It is also supported by the Dutch government and has been joined by some The New Motion