Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • No compromise on workzone safety
    January 14, 2022
    The National Work Zone Memorial is a sobering reminder of the dangers of working on US highways. More accurate and timely information can help reduce risks, explains One.network’s Simon Topp
  • VTT’s robot car parks autonomously
    June 25, 2018
    VTT Technical Research Centre of Finland’s robot car Marilyn is parking autonomously - 100m away from its driver. The trial in Tampere uses the Internet of Things (IoT) and is expected to allow vehicles to park closer together without fear of collisions at airports and shopping centres. Johan Scholliers, project manager at VTT, says the technology will also help reduce congestion in parking areas.
  • AGD launches advanced FMCW radar
    March 25, 2014
    Visitors to AGD’s stand at this year’s Intertraffic will see for themselves the firm’s most advanced FMCW intelligent radar detection system to date. AGD’s ‘318’ has been developed to detect and monitor vehicles in single lanes or highways and can track multiple vehicle targets simultaneously in both directions, providing range, speed and occupancy measurement to monitor and control traffic flow.
  • Interoperable electronic payment systems begin testing
    January 31, 2012
    OmniAir's Tim McGuckin writes about progress with the Electronic Payment Services National Interoperability Specification, which aims to provide the US with payment capabilities at lane level using any ETC component protocol. The OmniAir Consortium was founded to advance US national deployment of open, effective and interoperable transportation technology systems. Through its member-defined programmes, companies and individuals join to work for open standards, interoperability, third-party certification and