Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • Co-operative infrastructure reduces congestion, increases safety
    January 30, 2012
    ITS Japan's Chairman Hiroyuki Watanabe talks to ITS International about his country's progress with cooperative infrastructures and how the experience gained to date can benefit similar initiatives elsewhere. Japan gave the rest of the world a taste of the cooperative infrastructure future when, in 1996, it went live with the Vehicle Information and Communication System (VICS). Designed to provide real-time traffic information and alerts to in-vehicle navigation systems with the dual aims of increasing safe
  • TM 2.0 boost TMC data feed and driver influence
    November 15, 2017
    TM 2.0 views connected vehicles and V2I as two-way communications channels, benefitting traffic management and drivers, as Alan Dron discovers. As connected vehicles are progressively rolled out there will come a point at which traffic managers and traffic management centres (TMCs) will have to gear up to cope with a rapidly-evolving road scenario. The TM 2.0 Platform (see box) is promoting a concept of new-generation traffic management (which carries the same TM 2.0 title) and is studying how future T
  • Modernising India's bus travel
    August 29, 2012
    Award-winning ITS initiatives are promising modernisation of bus travel as a key part of development plans for cities of the Indian state of Karnataka. The Indian state of Karnataka is poised to launch the next stage of a major rollout of ITS technology on its bus network following the August 2012 go-live of an award-winning passenger information system. The Karnataka State Road Transport Corporation (KSRTC), which is owned by the state government
  • Axilion brings digital twin tech to UAE
    December 21, 2020
    Data modelling solution is expected to cut travel times for commuters by up to 40%