Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • Vienna buses display bike availability
    September 30, 2016
    Vienna has introduced software on trams and buses that shows passengers the number of bicycles available at upcoming stops with bike-sharing terminals, reports Eltis. Vienna has 121 bike-sharing terminals and 1 500 city bikes. Over 1 million trips took place on Citybike Wien bicycles last year. The joint project between public transport operator Wiener Linien, Citybike Wien and Infoscreen, the manufacturers of the screens was trialled in August and fully introduced across the city earlier this month.
  • Heathrow’s Ultra Pod technology joins GATEway driverless car pilot
    January 29, 2016
    British companies Westfield Sportscars, Heathrow Enterprises and Oxbotica have joined the GATEway (Greenwich Automated Transport Environment) project in Greenwich and are currently developing driverless shuttles for operation in Greenwich in summer 2016. Using entirely British engineering and software capabilities, the new consortium members will be developing the existing UltraPods currently in service at Heathrow Airport into fully autonomous and electric passenger shuttles. Operating at Terminal 5 for ne
  • Machine vision - cameras for intelligent traffic management
    January 25, 2012
    For some, machine vision is the coming technology. For others, it’s already here. Although it remains a relative newcomer to the ITS sector, its effects look set to be profound and far-reaching. Encapsulating in just a few short words the distinguishing features of complex technologies and their operating concepts can sometimes be difficult. Often, it is the most subtle of nuances which are both the most important and yet also the most easily lost. Happily, in the case of machine vision this isn’t the case:
  • University of Michigan announces new transportation research centre
    May 16, 2013
    The University of Michigan has announced the establishment of the Michigan Mobility Transformation Centre as a partnership with government and industry to dramatically improve the safety, sustainability and accessibility of the ways that people and goods move from place to place. According to Peter Sweatman, director of the U-M Transportation Research Institute (UMTRI) and director of the new centre, emerging technological advances could bring substantial benefits to society.