Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • Tata Motors to supply 40 e-buses to India
    February 18, 2019
    Tata Motors is to deploy 40 electric buses to Lucknow City Transport Services in India to support the government’s efforts for promoting electric vehicles (EVs). The delivery is part of a larger order in which 255 e-buses will be delivered to six public transport undertakings including WBTC (West Bengal), LCTSL (Lucknow), AICTSL (Indore), ASTC (Guwahati), J&KSRTC (Jammu) and JCTSL (Jaipur). Tata says its Ultra Electric buses will have a range of up to 150km on a single charge and will operate between
  • China tests 600km/h maglev vehicle in Shanghai
    June 29, 2020
    A maglev vehicle capable of 600km/h has run on a line at Tongji University
  • FLIPPER - improving the provision of flexible transport services
    February 2, 2012
    John Nelson and Brian Masson, Centre for Transport Research, University of Aberdeen, UK, describe the FLIPPER initiative which is intended to improve the provision of flexible transport services
  • Continental launches sensor to adjust vehicle height
    August 28, 2018
    German manufacturer Continental says its Ultrasonic Height and Pressure Sensor (UHPS) can adjust the height of commercial vehicles electronically to improve the efficiency of urban buses. The company says UHPS allows drivers to control the air springs when lowering one side of the bus at bus stops - rather than having to let the air out from the spring completely. UHPS uses ultrasound to measure the height and pressure in the air spring and sends the value of the electronic control unit, which automatic