Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • Lothian introduces electric bus fleet, Edinburgh
    October 5, 2017
    Lothian Buses has launched a fleet of six fully electric vehicles to operate in Edinburgh Service 1 route to reduce emissions and improve air quality in the area. The company claims its fleet will carry 1.8 million customers each year throughout the hilly terrain. The Wrightbus Street Air single deck buses (WSASDB) operate on pure electric powertrain, including an all-electric heating and cooling system, and have regenerative braking allows energy to be recovered to the batteries.
  • EVs stir interest but face obstacles – IBM study
    May 18, 2012
    Many automobile industry executives believe that sales of traditional vehicles will peak before 2020 and are looking to electric-only vehicles (EVs) as one of the next hot products, but they will first have to address stringent consumer requirements about EV performance, recharging, and convenience, according to a new IBM survey of consumer attitudes and a recent study of auto industry executives.
  • Kapsch TrafficCom: 'The city is not made for cars'
    October 22, 2018
    Traffic can be a really big challenge. When you’re stuck, you’re stuck. Everything comes to a standstill. But Alexander Lewald describes how existing infrastructures can be used more efficiently and how demand can be managed. A few figures to start with: in Los Angeles, the average driver spends 102 hours a year in traffic – that’s more than four days. This figure is 91 hours in Moscow and New York, 74 in London, 69 in Paris, 51 hours in Munich and still 40 hours in Vienna. Traffic is what causes
  • Washington’s smarter traffic signals could ease commuter congestion
    November 14, 2012
    City officials in Washington, DC, are launching a two-year test of technology that they hope will ease traffic gridlock and improve public safety in the city. In 2013, they will begin connecting traffic signals to existing high-speed network cables that run beneath the city streets. Once connected to the network, the signals will be equipped with video cameras and wi-fi hot spots. The test program will cover traffic lights at 16 intersections. According to governing.com the DC metro area regularly turns up