Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • Daimler launches its ‘bus of the future’
    July 21, 2016
    Daimler’s Mercedes-Benz Future Bus made its first autonomous trip on a public road recently, when it was driven at speeds of up to 70 km/h on a section of a bus rapid transit route in Amsterdam in the Netherlands. The 20 kilometre route, which links Schiphol Airport with the town of Haarlem, provided a challenge for the bus, with its numerous bends, tunnels and traffic signals. Although a driver was on board for safety reasons, for the most part the bus met the challenge autonomously, stopping at bus sto
  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • University of Michigan’s M City to test autonomous driving
    March 27, 2015
    The University of Michigan is creating the Mobility Transformation Center (MTC), in partnership with government and leading tech companies, as a means to test and develop the infrastructure and in-vehicle components to make autonomous vehicles a reality. M City, the nickname for the MTC, is a mock city that allows developers to test a fully autonomous driving experience in a real-world environment. With completion scheduled for July, the 32-acre facility on U of M’s North Campus will include buildings,