Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

Related Content

  • March 10, 2016
    Lufft launches new generation of weather sensors
    Lufft USA’s new high quality WMO-compliant weather sensor, the WS3000, part of the company’s new WS1000 series, measures air temperature, relative humidity and air pressure. Relative humidity is measured by means of a heated capacitive sensor element; a precision PT100 measuring element is used to measure air temperature.
  • October 4, 2018
    Hyperloop could create $10bn supply chain manufacturing ecosystem
    Hyperloop has the potential to create a $10 billion supply chain manufacturing ecosystem in the Middle East, says Virgin Hyperloop One. The company says it could also improve safety, decrease pollution and reduce congestion, and adds that the United Arab Emirates (UAE) and Kingdom of Saudi Arabia are well-placed to benefit from disruptive technologies in transportation, with governments from both countries exploring autonomous pods, driverless cars and flying taxis. Amjad Almkhalalati, director
  • October 28, 2021
    Cost Benefit: Don’t waste your energy
    There are ways that we can harvest power from the world’s roads – without necessarily building new infrastructure. David Crawford investigates some of these new approaches
  • December 6, 2017
    Vision technology lifts blinkers from tunnel vision
    Sony’s Jerome Avenel looks at how advances in imaging technology are helping improve safety. On the 24th March 1999, a Belgian truck transporting flour and margarine through the 11.6km Mont Blanc tunnel caught alight when a cigarette stub entered the engine induction snorkel, lighting the paper air filter. The fire left over 30 dead and many more injured. At the time, the Mont Blanc tunnel disaster was the world’s worst tunnel fire.