Skip to main content

2getthere’s Group Rapid Transit vehicle passes desert climate test

2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.
October 26, 2017 Read time: 2 mins

8172 2getthere’s Group Rapid Tansit (GRT) autonomous vehicle has proven in a simulated desert climate that it can maintain an indoor temperature of 23˚C even in the worst scenario (52˚C outside temperature and 3% humidity). The climate test took place in the Utrecht province and is one of many tests regarding the mega-order received from United Arab Emirates earlier this year. From 2020, five vehicles will perform fully autonomous shuttle services to and from Bluewater Island in Dubai.

GRT was subject to three tests in weather conditions such as ‘hot dry’ and ‘hot humid’ with a focus on the performance of the air conditioning system (ACS) at the vehicles maximum capacity of 24 passengers.

13 ACS has been developed in collaboration with suppliers DC Airco and Netherlands Aerospace Centre (NLR) who used the simulation of heat management in relation to airflow within the vehicle in its design of the air conditioning. Its development has been partly financed through a 2024 Massachusetts Institute of Technology research grant in which DC Airco and 2getthere have both participated.

The simulated weather conditions included extremely high temperatures and sun radiation with average peaks in the sun radiation of 1,040 Watts per square metre and peaks in temperature of 52˚C around 3.30pm. In the climatic chamber, both peaks were simulated at the same time.

The GRT’s 16 standing passengers represented 120 Watts each and eight seated passengers each represented 100 Watts were simulated by placing a 3000-Watt heat source inside the vehicle. Part of the test focused on performance during transition: the speed at which indoor conditions are brought back to the most comfortable level for passengers after the doors close and the vehicle starts its journey. The most extreme test was based on the vehicle standing still with the doors open for six minutes, but in actual circumstances much shorter stops will be sufficient to allow 24 passengers to enter the vehicle and find their seats.

According to 2getthere the test marks another step towards the operational deployment of the system, scheduled for 2019/2020.

For more information on companies in this article

Related Content

  • EasyMile participates in Colorado AV trial
    August 16, 2021
    AvCo partners include Stantec Generation AV, Panasonic and CDoT
  • Muji and Sensible 4 to launch all-weather autonomous shuttle
    November 14, 2018
    Software firm Sensible 4 and Japanese retail company Muji have joined forces to develop Gacha, an all-weather autonomous shuttle expected to operate in Finland by 2020. Sensible 4 is providing the technology for the vehicle’s positioning, navigation and obstacle detection. Muji is designing the vehicle. Gacha will make its debut at a launch event in Helsinki in March 2019, and will then be available to riders in three cities: Espoo, Vantaa and Hämeenlinna. Sensible 4 is now looking for industry partne
  • Mexico’s Durango-Mazatlan highway sets tunnel safety standard
    August 26, 2016
    Mauro Nogarin looks at the management of the longer tunnels on Mexico’s Durango-Mazatlan highway. In recent years the National Infrastructure Fund of Mexico has increased investment in the installation of ITS systems on selected highways to increase road safety. One such major investment is the 230km long Durango-Mazatlan highway which is 12m in width and has an average speed of 110km/h.
  • America explores road user charging options
    November 14, 2017
    Jack Opiola casts an eye over the numerous road user charging pilots underway in the US. In the USA, congestion mitigation and improving mobility have often focused on network improvements, increased road capacity, improved public transport, high-occupancy toll (HOT) lanes or ‘express lanes’ and ITS measures – all of which require political capital and major funding. Nowadays, political capital is as hard to obtain as funding because more political leaders are recognising the decline of fuel excise tax