Skip to main content

SESA deploys dynamic Trailblazer signs for Michigan DOT

SES America (SESA) recently completed the manufacture and installation of full colour LED dynamic Trailblazer signs for the Michigan Department of Transportation and is set to soon begin manufacturing of additional signs for the next phase of this ongoing work. The signs are part of integrated corridor management along I-75 designed by the Michigan Department of Transportation. Each sign is part of SESA’s Messenger 5000 embedded DMS series, a line of embedded DMS designed to display travel time, toll rate,
May 6, 2016 Read time: 2 mins

7846 SES America (SESA) recently completed the manufacture and installation of full colour LED dynamic Trailblazer signs for the Michigan Department of Transportation and is set to soon begin manufacturing of additional signs for the next phase of this ongoing work.

The signs are part of integrated corridor management along I-75 designed by the Michigan Department of Transportation. Each sign is part of SESA’s Messenger 5000 embedded DMS series, a line of embedded DMS designed to display travel time, toll rate, lane status or traffic control information.

As part of this project, the embedded DMS is intended to divert and manage the influx of traffic, and reduce traffic queues and congestion on freeways for both Macomber and Oakland counties. The signs feature a full colour display capable of showing a variety of arrows that re-direct traffic as necessary on to surface roads and alternate routes. The signs are controlled by SESA’s state-of-the-art NTCIP-compliant SCU6 controller housed in field cabinets near each site. Each sign is placed at strategic locations and display the indicative arrow only when needed.

According to SESA, this combination of static sign and embedded dynamic display is cost effective, advantageously replacing an entire full colour/full matrix DMS.

For the first deployment, energy-efficient technology was utilised to minimize the quantity and size of command, control, and power components, enabling the components to be installed in a small NEMA 4X cabinet attached to each sign structure for the initial deployment. This design was refined for the subsequent deployment, allowing all components to be installed within the sign itself, while maintaining the slim sign housing design required for the project.

For more information on companies in this article

Related Content

  • Bumper-to-bumper productivity from Winsted
    June 12, 2023
    Ergonomic comfort isn’t just a feature, it’s a requirement for control rooms, says firm
  • Slow adoption of European VMS harmonisation
    January 31, 2012
    Alberto Arbaiza, ES4-Mare Nostrum Chair, Directorate General of Traffic, Spain and Antonio Lucas-Alba, ES4 Secretariat, INTRAS, University of Valencia, Spain write about progress towards variable message sign harmonisation in Europe . Particularly in Europe, national road administrations have been faster at generating and adopting new road signs than the standardisation process has been at generating them.
  • Econolite and Image Sensing Systems Introduce Autoscope Vision
    August 11, 2016
    Building on more than two decades of above-ground video detection experience, Econolite and Image Sensing Systems have introduced the Autoscope Vision detection solution, which delivers stop bar vehicle and bicycle detection, advance vehicle detection, bicycle differentiation, traffic data collection and HD video surveillance. Vision setup is simple and quick, and can be accomplished over the built-in local wi-fi, which can also support streaming video. Employing newly-developed, full-field-of-view objec
  • Proposed system to take guesswork out of choosing a freeway lane
    March 17, 2014
    A fledgling advanced lane management assist system can take the guesswork out of selecting the right lane on a congested freeway, as its inventor Robert Gordon explains. As drivers we’ve all done it and control room staff see it all the time – motorists on congested freeways switching into what they perceive is a faster lane, only to come to a halt a few moments later and watch vehicles in the other lanes continue to move past. Now, by re-analysing readily available data in an advanced lane management as