Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

For more information on companies in this article

Related Content

  • ANPR - cost-efficient traffic management, enforcement and more
    January 23, 2012
    Geoff Collins of Vysionics Intelligent Traffic Solutions talks about the near-term prospects of ANPR. The continued absence of a champion for its cause is preventing digital enforcement technology from delivering the true levels of cost-effectiveness of which it is capable, according to Geoff Collins, sales and marketing director of ANPR specialist Vysionics Intelligent Traffic Solutions.
  • In-vehicle warning systems ‘reduce risk of run-off-the-road crashes’
    August 27, 2015
    In-vehicle lane-departure warning systems can help reduce the risk of dangerous run-off-the-road crashes, according to a new study from researchers at the University of Minnesota’s HumanFIRST Laboratory. “Run-off-the-road crashes are a huge concern, especially in rural areas,” says project co-investigator Jennifer Cooper, a HumanFIRST Lab assistant scientist. “Crash statistics tell us they contribute to more than half of all vehicle fatalities nationwide and that these crashes occur most often on two-la
  • Section speed enforcements gains global converts
    October 26, 2017
    As the benefits of section speed enforcement are becoming clearer, the technology is gaining converts worldwide. Colin Sowman reports. America’s National Transportation Safety Board (NTSB) is calling for urgent action from both road authorities and the federal government to combat speeding which has been identified as one of the most common factors in motor vehicle crashes in the United States. This new call follows the publication of a safety study which found that between 2005 through 2014, 31% of all
  • Transition to Shared Mobility: How cities can deliver inclusive transport services
    June 2, 2017
    A new study released by the International Transport Forum (ITF) examines how cities can manage the challenges of geographical scale and transition to shared mobility services.