Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

For more information on companies in this article

Related Content

  • Machine vision’s image of road management’s future
    June 11, 2015
    Q-Free’s Marco Sinnema looks at how the commoditisation of high-quality vision-based solutions is widening their application. Machine vision technology’s entry into the ITS/traffic management sector has followed a classic top-down path. This is unsurprising given the extremely demanding performance criteria which are the standard in its market of origin, manufacturing processing. Very high image qualities combined with frame rates often in the hundreds per second range resulted in vision systems with capabi
  • Intersection collision avoidance system trial
    January 31, 2012
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.
  • Tollers make way as NextNav muscles into 902-928MHz spectrum
    July 30, 2013
    Toll operators and Progeny trade claim and counter claim about the potential ramifications of operating in the 902-928MHz spectrum, as Jon Masters finds out. Two months after the Federal Communications Commission (FCC) determined that Progeny can start commercial operation of its NextNav location finding service, the dust has begun to settle. The tolling industry has had a chance to reflect on how this may impact its operations, in the knowledge that NextNav will share the 902-928MHz frequency band with RFI
  • IRD: from the ground up
    September 16, 2021
    IRD is undertaking a comprehensive review of its road safety and monitoring solutions. A series of initiatives is building on the company’s in-pavement expertise, bringing considerable additional value for the customer to the traditional range of products while complementing these with wholly new technologies