Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

Related Content

  • Autonomous vehicles, smart cities: moving beyond the hype
    February 21, 2018
    There is a lot of excited chatter about autonomous vehicles – but 2getthere’s Robbert Lohmann suggests we might need to take a step back and look realistically at what is achievable. You might be surprised that the chief commercial officer of a company delivering autonomous vehicles would begin an article with the suggestion that we need to get past the hype. And yet I do; because we have to, and urgently so. The hype prevents the development of autonomous vehicles that address actual transit needs. And
  • Reducing congestion with Tomtom's historical traffic data
    December 5, 2012
    Historical traffic data provided by TomTom is being used by the local government in Spain’s Basque region to reduce road congestion at less cost. Old habits die hard. Photos from as far back as the 1930s show people counting cars by the roadside in order to provide congestion data to those running road networks. Today, such techniques are still used, albeit augmented by a range of automation technologies such as inductive loops, infra-red sensors and number plate recognition. Even with these advances, howe
  • Xerox demonstrates effectiveness of vehicle passenger detection system
    October 8, 2015
    Xerox recently piloted its vehicle passenger detection system in Europe on the busy French-Swiss border, to demonstrate how an accurate automated system would enable transport authorities to operate high occupancy vehicle (HOV) lanes and encourage commuters to adopt carpooling. The pilot, conducted in conjunction with the French Centre for Studies and Expertise on Risks, Environment, Mobility, and Urban and Country planning (Cerema) and the Regional Directorate for the Environment, Planning and Housing (
  • Development of cooperative driving applications for work zones
    July 17, 2012
    The German AKTIV project is researching several cooperative driving applications for use in work zones. PTV's Michael Ortgiese details progress. The steep increases in traffic volumes predicted back in the early 1990s have unfortunately been proven to be more than accurate. In Germany, the AKTIV project continues to look into cooperative technologies' potential to reduce the impact of those increased traffic volumes and keep traffic moving despite limitations in infrastructure capacity.