Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

Related Content

  • August 26, 2016
    Mexico’s Durango-Mazatlan highway sets tunnel safety standard
    Mauro Nogarin looks at the management of the longer tunnels on Mexico’s Durango-Mazatlan highway. In recent years the National Infrastructure Fund of Mexico has increased investment in the installation of ITS systems on selected highways to increase road safety. One such major investment is the 230km long Durango-Mazatlan highway which is 12m in width and has an average speed of 110km/h.
  • April 5, 2016
    FRA makes funding available for positive train control implementation
    The US Department of Transportation’s Federal Railroad Administration (FRA) is accepting applications for US$25 million in competitive grant funding available to railroads, suppliers, and state and local governments for positive train control (PTC) implementation. The funding is part of the 2016 Consolidated Appropriations Act that funds the US Department of Transportation. Applications will be accepted until 19 May 2016 and FRA will give preference to projects that would provide the greatest level of p
  • July 16, 2012
    Semi-autonomous hybrid vehicle trials show fuel, emission savings
    The Transport Research Laboratory has unveiled an innovative semi-autonomous vehicle prototype. It offers improves in environmental performance and safety but also displays some shortcomings. Mike Woof reports. The UK's Transport Research Laboratory (TRL) has been working on an innovative project to develop a prototype vehicle intended to reduce fuel consumption. Based on a Ford Escape hybrid model, TRL's Sentience vehicle uses a combination of mobile communications and mapping technologies to reduce fuel c
  • October 3, 2018
    Copenhagen: everything's gone green
    As the ITS World Congress arrives in Copenhagen, Adam Hill finds out how Dynniq has been helping traffic flow – and CO2 reduction - in the Danish capital. Most of the time, ‘breathing easier’ is just an expression which indicates a metaphorical sigh of relief that something has worked out alright. But it can be literally true, too. Respiratory and other potential health problems which stem from pollution in the world’s increasingly urbanised environments have been well publicised and governments are