Skip to main content

Reducing high levels of particles in tunnels

A new study from Sweden’s National Road and Transport Research Institute (VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.
March 1, 2017 Read time: 2 mins

A new study from Sweden’s National Road and Transport Research Institute (5230 VTI) which aims to improve understanding of the differences between inhalable particles in highway versus railway environments has indicated that older types of trains produce more particulate emissions in railroad tunnels than do newer ones. Dust binding, improved paving and reduced studded tyre use could reduce coarse particle levels in road tunnels.

The tests were carried out in Sweden at Arlanda Central station beneath Arlanda Airport and in the Söderleden road tunnel in central Stockholm. The results indicate that the environment of the studied railroad tunnel is characterised by peaks in coarse particle concentration. Some trains can be tied to emissions of ultrafine particles which consist mainly of iron, with lesser amounts of copper, zinc and other metals.

The main focus of measures to remedy high particle counts in railway tunnels has so far been on preventing exposure by separating trains from platforms or using ventilation to remove polluted air, but few studies have examined the means available to prevent the emissions themselves.

According to VTI researcher Mats Gustafsson, the study demonstrates that it is possible to reduce particulate emissions by identifying and improving train types as well as individual trains and their characteristics.

Road tunnels are characterised by high levels of ultrafine particles and high levels of coarse particles when conditions are dry. Because the traffic in such tunnels is more intense than in railroad tunnels, the particle levels are more consistently high during rush hours.

“The options available to combat coarse particles in road tunnels comprise reduced studded tyre use, better paving, and efficient dust binding and cleaning”, said Gustafsson.

The ultrafine particles that occur in high concentrations derive from vehicle exhaust and can be addressed by reducing traffic volumes, improving exhaust treatment, and lowering the proportion of heavy traffic, he says.

Related Content

  • August 23, 2024
    Pedestrians still walking a tightrope in US
    Although the Governors Highway Safety Association says annual US pedestrian traffic deaths fell for first time since Covid, they remain above pre-pandemic levels, finds David Arminas
  • April 30, 2015
    Cable cars come of age in trans-continental expansion
    David Crawford explores a high-level option of public transport. Sharing its origin with that of ski lifts at winter sports resorts in the European Alps, urban aerial cable transport is attracting growing interest as a low-footprint, low-energy alternative to conventional public transport that can swoop over ground-level traffic congestion.
  • April 23, 2025
    Huawei advocates for change
    Achieving technological change also requires a shift in mindset, as Jacky Wang, vice president of Huawei’s Smart Transportation business unit, explains
  • June 1, 2016
    Gotthard Base Tunnel opens in Switzerland
    After 17 years of construction, the 57 kilometre-long Gotthard Base Tunnel in Switzerland, said to be the longest train tunnel in the world opens today, 1 June. At a depth inside the Gotthard massif of more than 2,000 metres, trains will travel at up to a maximum 250 kilometres per hour. The opening is attracting attention from high profile figures outside of Switzerland, including Germany’s chancellor Angela Merkel, French president François Hollande and Italian Prime Minister Matteo Renzi, who will al