Skip to main content

EarthSense Systems reveals cleaner air routes in city-wide project

A project has been launched to produce city-wide visualisations of air quality through combining EarthSense Systems' (ESS) ordnance survey (OS) geospatial data and real-time air quality data. The technology, a joint venture between Bluesky and University of Leicester, is being used to highlight areas of higher pollution and allows users to identify cleaner air routes such as parks or canal routes. ESS captures measurements on air quality through using a zephyr sensor and a city-wide network of sensors.
October 13, 2017 Read time: 2 mins

A project has been launched to produce city-wide visualisations of air quality through combining EarthSense Systems' (ESS) ordnance survey (OS) geospatial data and real-time air quality data.

The technology, a joint venture between Bluesky and University of Leicester, is being used to highlight areas of higher pollution and allows users to identify cleaner air routes such as parks or canal routes.

ESS captures measurements on air quality through using a zephyr sensor and a city-wide network of sensors. It delivers data forecasting, master planning and confirms cleaner cycling routes by combining with other inputs such as satellite observations, weather conditions and traffic emission data in its MappAir modelling solution. The data is available hourly, with a three day forecast, and historically, with resolutions ranging from 1m for detailed study areas to 10m for full city maps, and 100m for the national picture.

The OS Open Greenspace product is used to communicate EarthSense’s modelled air quality levels; depicting the location and extent of recreational and leisure facilities. The features included within the data are parks, play spaces, golf courses and allotments. In addition, the OS Maps app allows users to view the greenspace information and assists them with locating greenspaces in their local area.

Philip Wyndham, strategic development manager at the Ordance survey, said, “The insights gained from such modelling can also be used by policy makers and city planners to make practical interventions around mitigating hot spots – such as traffic light phasing, coordination of streetworks or correctly maintained urban trees and hedges which can trap many harmful pollutants."

Related Content

  • Huawei’s clearer vision for safe traffic
    August 4, 2020
    Rates of compliance with traffic laws are often linked to the chances of detection. Andrew Watson explains how intelligent traffic management solutions can help change drivers’ behaviour
  • Improve and increase mass transit systems to minimise congestion
    January 24, 2012
    Rather looking to solve congestion by spreading the load, perhaps we need to look at concentrating it. Michael L. Sena writes. We humans were made to walk and run at embarrassingly slow speeds by comparison with other, more fleet-footed organisms. The sea is not our natural habitat and we were definitely not designed to fly unaided. Nevertheless, humankind has evolved a method of living during the past century that is dependent on transporting its members over very long distances during relatively short per
  • Report analyses multiple ITS projects to highlight cost and benefits
    March 16, 2015
    Every year in America cost benefit analysis is carried out on dozens of ITS installations and pilot studies and the findings, along with the lessons learned, are entered into the Department of Transportation’s (USDOT’s) web-based ITS Knowledge Resources database. This database holds more than 1,600 reports and periodically the USDOT reviews the material on file to draw conclusions from this wider body of evidence. It has just published one such review ITS Benefits, Costs, and Lessons Learned: 2014 Update Re
  • Transport integration separates rural idyll from remote isolation
    June 13, 2017
    David Crawford investigates the operation of Total Transport in some of Europe’s more rural areas. Total Transport is a concept that is gaining traction in Europe as a means of making it easier for people without access to a car and living in rural and remote communities, to travel to work, the shops, schools and hospitals. It involves maximising vehicle availability and integrating scheduled services with other transport services (including taxis) commissioned or contracted by more than one local governmen