Skip to main content

Big data, virtualisation to dominate smart transportation says ABI Research

ABI Research’s latest report, Smart Transportation Market Research, covers ITS data, physical roadside transportation infrastructure virtualisation technologies and a systems approach to transportation management, as well as relevant connectivity, analytics, cloud platform, security and identity technologies. Traditional smart transportation approaches to address traffic congestion, safety, pollution, and other urbanisation challenges are expected to hit scalability and efficiency obstacles by the end of
January 6, 2015 Read time: 2 mins
5725 ABI Research’s latest report, Smart Transportation Market Research, covers ITS data, physical roadside transportation infrastructure virtualisation technologies and a systems approach to transportation management, as well as relevant connectivity, analytics, cloud platform, security and identity technologies.

Traditional smart transportation approaches to address traffic congestion, safety, pollution, and other urbanisation challenges are expected to hit scalability and efficiency obstacles by the end of this decade. Traveller information systems such as variable message signs, intelligent traffic lights, camera-enforced urban tolling and traffic monitoring centres will ultimately prove ineffective and prohibitively expensive, threatening to stall economic growth, especially in developing regions. According to ABI Research, global yearly spend on traffic management systems alone will exceed US$10 billion by 2020.

“What will really be required is a step change towards virtualising smart transportation solutions via in-vehicle technology, and cloud-based control systems whereby information is sent directly to and from the car, bypassing physical roadside infrastructure all together. Low latency, peer-to-peer, and meshed-network type connectivity based on DSRC-enabled V2V, 4G, and, in the next decade, 5G, will be critical enablers of this transformation,” comments VP and practice director Dominique Bonte.

ITS virtualisation will heavily rely on big data with car OEMs such as 1686 Toyota, 609 Volvo, and PSA already exploring generating hyper-local weather and/or traffic services from car probe data, to be shared with both other nearby vehicles and, in aggregated from, governments and road operators. Other examples include 260 Continental’s partnership with 7643 Here and 62 IBM on its dynamic eHorizon solution.

However, a closed-loop systems approach will ultimately become the key paradigm, allowing Artificial Intelligence-powered self-steering and learning demand-response solutions influencing traffic levels through dynamic speed limits and variable road use and toll charges. Autonomous vehicles, in an ironic twist, will be managed collectively and controlled centrally, remotely and dynamically adjusting routing and other parameters.

Related Content

  • May 10, 2016
    Smart mobility on the rise, says ABI Research
    As extreme pollution and congestion in urban areas coupled with limited transportation options continues to challenge major cities across the globe, market intelligence firm ABI Research, predicts an imminent rise in smart electric mobility. Data analysis forecasts global electric vehicle revenue will hit US$58 billion in 2021, more than five times its market value in 2015. "The role of vehicle electrification in urban areas is part of a broader smart mobility model that includes shared vehicles, chargi
  • May 2, 2018
    V2X: The design challenges
    The connected future throws up a number of enticing possibilities for us all. But, says Houman Zarrinkoub of MathWorks, issues around visualisation, prototyping and model evolution need to be examined carefully. We are all aware of the huge amount of investment going into driverless car technologies. With the likes of Volvo, Tesla and BMW getting in on the act, soon they will be a common sight on our roads. However, for this to occur, the vehicles must be able to connect with each other and ensure driver
  • August 18, 2016
    Highly automated driving ‘to spark adoption of centralised ADAS’
    As vehicles become highly independent and begin to drive and react to traffic on their own, autonomous systems will aggregate and process data from a variety of on-board sensors and connected infrastructure, says ABI Research. This forces the industry to hit a hard reset on advanced driver assistance systems (ADAS) architectures, currently dominated by distributed processing and smart sensors. Automotive OEMs will need to adopt new platforms based on powerful, centralised processors and high-speed low la
  • July 1, 2015
    Here to lead vehicle hazard warning pilot in Finland
    Mapping and navigation specialist Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road. Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS)