Skip to main content

Estimating winter road recovery time with traffic data

In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses
February 15, 2013 Read time: 3 mins
In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the 2103 Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time.

To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses traffic data to help determine the roadway recovery time.

The process uses data on traffic speed, flow, and density collected by loop detectors in the twin cities metro area to estimate the point at which traffic patterns return to normal, an indicator that the roadway surface has recovered.

 The project, led by UMD civil engineering professor Eil Kwon and sponsored by MnDOT, began with an evaluation of common traffic patterns during a snow event. Findings indicate that drivers travel below the speed limit during a snow event until the roadway has recovered enough to comfortably increase speed to normal levels.

The team also identified two common speed recovery patterns following a snow event. In the first pattern, speed recovery is affected only by road condition, meaning that traffic gradually returns to free-flow conditions as the road is cleared. In the second, recovery is affected by both road condition and traffic flow. In this case, speed may not reach the posted limit even with a completely clear roadway because of normal heavy traffic conditions, during rush hour for example.

For each of the two patterns, the researchers developed an automatic process that identifies specific points at which traffic speed changes during winter maintenance activities, indicating changes in the condition of the road surface. The last significant change before speed returns to normal is defined as the “road condition recovered” point.

To test the prototype process, the researchers used data from two snow-removal routes collected during the 2011–2012 season in the twin cities. Results from four different snow events show that the process was able to successfully identify speed changes and estimate road condition recovery points.

In the second phase of the project, currently under way, the researchers are refining the prototype so it can more accurately identify traffic flow recovery patterns under various conditions.

For more information on companies in this article

Related Content

  • Advancing traffic management for smart cities
    September 3, 2024
    Promises of increased safety, less pollution, increased productivity and a better quality of life in smart cities are just too good to be ignored. Dany Longval of Teledyne Flir talks through some of the challenges
  • MDOT uses connected vehicle technology to clear snow and ice
    January 9, 2017
    Connected vehicle technology is helping Michigan Department of Transportation (MDOT) clear snow and ice from roadways faster, using GPS-based automatic vehicle location (AVL) devices on its winter road maintenance equipment. These systems report where each truck is, and they gather data from other sensors to report details like atmospheric conditions, camera images, and speed and salt application rates for each vehicle.
  • M62 managed motorway scheme signs switched on
    February 12, 2013
    Work to upgrade part of the M62 in West Yorkshire to a managed motorway, the first scheme in the Yorkshire and Humber region, reached a significant milestone when the first overhead electronic signs went live. For the first time, the variable advisory speed limit signs have come into operation between junctions 27 and 28 to allow the UK Highways Agency to calibrate and test the technology required for the new managed motorway, with the signs being switched on and off in response to traffic conditions. Advis
  • Cost saving multi-agency transportation and emergency management
    May 3, 2012
    Although the recession had dramatically reduced traffic volumes in the past few years, the economy was on the brink of a recovery that portended well for jobs but poorly for traffic congestion. Leaders of four government agencies in Houston, Texas, got together to discuss how to collectively cope with the expected increase in vehicles on the road. "They knew they couldn't pour enough concrete to solve the problem, and they also knew the old model of working in a vacuum as standalone entities would fail," sa