Skip to main content

Estimating winter road recovery time with traffic data

In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses
February 15, 2013 Read time: 3 mins
In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the 2103 Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time.

To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses traffic data to help determine the roadway recovery time.

The process uses data on traffic speed, flow, and density collected by loop detectors in the twin cities metro area to estimate the point at which traffic patterns return to normal, an indicator that the roadway surface has recovered.

 The project, led by UMD civil engineering professor Eil Kwon and sponsored by MnDOT, began with an evaluation of common traffic patterns during a snow event. Findings indicate that drivers travel below the speed limit during a snow event until the roadway has recovered enough to comfortably increase speed to normal levels.

The team also identified two common speed recovery patterns following a snow event. In the first pattern, speed recovery is affected only by road condition, meaning that traffic gradually returns to free-flow conditions as the road is cleared. In the second, recovery is affected by both road condition and traffic flow. In this case, speed may not reach the posted limit even with a completely clear roadway because of normal heavy traffic conditions, during rush hour for example.

For each of the two patterns, the researchers developed an automatic process that identifies specific points at which traffic speed changes during winter maintenance activities, indicating changes in the condition of the road surface. The last significant change before speed returns to normal is defined as the “road condition recovered” point.

To test the prototype process, the researchers used data from two snow-removal routes collected during the 2011–2012 season in the twin cities. Results from four different snow events show that the process was able to successfully identify speed changes and estimate road condition recovery points.

In the second phase of the project, currently under way, the researchers are refining the prototype so it can more accurately identify traffic flow recovery patterns under various conditions.

For more information on companies in this article

Related Content

  • Value of time – the key decider
    March 4, 2014
    The ‘value of time’ concept can be a vital decider in prioritising transport projects, as Lorenzo Casullo and Serbjeet Kohli of Steer Davies Gleave explain. How much do travellers value their time and how much would they be willing to pay for a better and faster transport option? For many years Steer Davies Gleave (SDG) has been collecting this type of information from thousands of people across the world as it researches travellers’ behaviour. And given the importance of this parameter for transport mo
  • Semi-autonomous hybrid vehicle trials show fuel, emission savings
    July 16, 2012
    The Transport Research Laboratory has unveiled an innovative semi-autonomous vehicle prototype. It offers improves in environmental performance and safety but also displays some shortcomings. Mike Woof reports. The UK's Transport Research Laboratory (TRL) has been working on an innovative project to develop a prototype vehicle intended to reduce fuel consumption. Based on a Ford Escape hybrid model, TRL's Sentience vehicle uses a combination of mobile communications and mapping technologies to reduce fuel c
  • US States use technology and smart solutions to battle winter weather
    December 18, 2013
    US state Departments of Transportation (DOTs) are gearing up to meet the challenge of maintaining a high level of service during the winter without the benefit of additional financial resources. High-tech solutions like GPS guidance systems and low-tech products like potato juice are helping states to cut costs, improve efficiency, and minimise environmental impacts. The Alaska Department of Transportation and Public Facilities uses a variety of advanced technologies to combat extreme winter weather and
  • Glasgow’s new Operations Centre has a key role in city’s future
    June 6, 2014
    David Crawford investigates a control centre with a future. Destined to play a central role in keeping the city and its transport running smoothly during the 2014 Commonwealth Games in July, the new Glasgow Operations Centre in Scotland’s largest urban centre formally went live earlier this year. The aim was to dry run its far-reaching integration of previously distinct core systems and familiarise the public with the initial phase of what will be a long-term post-event legacy. The centre brings together, i