Skip to main content

Estimating winter road recovery time with traffic data

In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses
February 15, 2013 Read time: 3 mins
In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the 2103 Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time.

To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses traffic data to help determine the roadway recovery time.

The process uses data on traffic speed, flow, and density collected by loop detectors in the twin cities metro area to estimate the point at which traffic patterns return to normal, an indicator that the roadway surface has recovered.

 The project, led by UMD civil engineering professor Eil Kwon and sponsored by MnDOT, began with an evaluation of common traffic patterns during a snow event. Findings indicate that drivers travel below the speed limit during a snow event until the roadway has recovered enough to comfortably increase speed to normal levels.

The team also identified two common speed recovery patterns following a snow event. In the first pattern, speed recovery is affected only by road condition, meaning that traffic gradually returns to free-flow conditions as the road is cleared. In the second, recovery is affected by both road condition and traffic flow. In this case, speed may not reach the posted limit even with a completely clear roadway because of normal heavy traffic conditions, during rush hour for example.

For each of the two patterns, the researchers developed an automatic process that identifies specific points at which traffic speed changes during winter maintenance activities, indicating changes in the condition of the road surface. The last significant change before speed returns to normal is defined as the “road condition recovered” point.

To test the prototype process, the researchers used data from two snow-removal routes collected during the 2011–2012 season in the twin cities. Results from four different snow events show that the process was able to successfully identify speed changes and estimate road condition recovery points.

In the second phase of the project, currently under way, the researchers are refining the prototype so it can more accurately identify traffic flow recovery patterns under various conditions.

For more information on companies in this article

Related Content

  • Traffic signals turn red to stop speeding drivers
    March 15, 2012
    David Crawford is encouraged by the spread of 'soft' speed policing 
  • Hard shoulder running aids uniform traffic flow and safer driving
    January 23, 2012
    David Crawford detects a market for European experience. Well-established now in at least three European countries, Hard Shoulder Running (HSR) on motorways is exciting growing interest in the US. A November 2010 Report to Congress by the Federal Highway Administration (FHWA), on the Efficient Use of Highway Capacity, notes the role of HSR in the European-style Active Traffic Management (ATM) strategies now being recommended for implementation in the US where, until recently, they were virtually unknown.
  • Driving forward cooperative intersection safety applications
    July 24, 2012
    Gregory Davis, FHWA, John Harding, NHTSA, and Mike Schagrin, ITS Joint Program Office (RITA) chart the course for cooperative intersection safety applications being pursued as part of the IntelliDrive programme. Crashes at intersections accounted for 8,703 highway fatalities in the US in 2008. Research and development is moving forward on IntelliDriveSM safety applications designed to help drivers avoid intersection accidents. These new safety systems could substantially drive down the highway death and inj
  • Intelligent lane control signals help direct driver behaviour
    November 21, 2012
    As part of a larger effort exploring the effects of roadway signage on driver behaviour, researchers from the University of Minnesota College of Design have conducted a study on the effectiveness of intelligent lane control signals (ILCS). During the study, was funded by the Minnesota Department of Transportation (MnDOT), the research team used a driving simulator to test ILCS that displayed merge, speed control, and lane-closure warnings over freeway lanes. The researchers were specifically interested in d