Skip to main content

Estimating winter road recovery time with traffic data

In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses
February 15, 2013 Read time: 3 mins
In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the 2103 Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time.

To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses traffic data to help determine the roadway recovery time.

The process uses data on traffic speed, flow, and density collected by loop detectors in the twin cities metro area to estimate the point at which traffic patterns return to normal, an indicator that the roadway surface has recovered.

 The project, led by UMD civil engineering professor Eil Kwon and sponsored by MnDOT, began with an evaluation of common traffic patterns during a snow event. Findings indicate that drivers travel below the speed limit during a snow event until the roadway has recovered enough to comfortably increase speed to normal levels.

The team also identified two common speed recovery patterns following a snow event. In the first pattern, speed recovery is affected only by road condition, meaning that traffic gradually returns to free-flow conditions as the road is cleared. In the second, recovery is affected by both road condition and traffic flow. In this case, speed may not reach the posted limit even with a completely clear roadway because of normal heavy traffic conditions, during rush hour for example.

For each of the two patterns, the researchers developed an automatic process that identifies specific points at which traffic speed changes during winter maintenance activities, indicating changes in the condition of the road surface. The last significant change before speed returns to normal is defined as the “road condition recovered” point.

To test the prototype process, the researchers used data from two snow-removal routes collected during the 2011–2012 season in the twin cities. Results from four different snow events show that the process was able to successfully identify speed changes and estimate road condition recovery points.

In the second phase of the project, currently under way, the researchers are refining the prototype so it can more accurately identify traffic flow recovery patterns under various conditions.

For more information on companies in this article

Related Content

  • Asecap Days 2024: Getting used to the new normal
    August 27, 2024
    Asecap Days 2024 in Milan focused on environmental protection of road infrastructure, digital twin-based maintenance and monitoring of highways as well as the impact of electric vehicles, reports David Arminas
  • Transport and traffic management for major sporting events
    February 2, 2012
    Maurizio Tomassini, Isis, and Monica Giannini, Pluservice, detail the STADIUM project, which is intended to provide those responsible for planning major international events with a blueprint for success
  • The smart in smart parking
    March 29, 2018
    Whether you want to reduce congestion, increase parking revenue or reduce occupancy – or a mixture of all three – there is plenty of technology available. Andrew Bardin Williams considers the pros and cons. Drawn in by the promise of Smart City initiatives, communities across North America are embracing smart parking solutions in an effort to change citizens’ transportation behaviours for the better. They are doing this by using policy and ITS solutions to help de-incentivise parking for most people while
  • Adaptive cruise control would suppress traffic instability
    March 20, 2014
    Professor Berthold Horn of Massachusetts Institute of Technology believes a modified adaptive cruise control could mitigate phantom traffic jamsthat occur for no apparent reason. The phenomenon of the phantom traffic jam is all too common: they appear for no apparent reason and, having caused frustrating delays for all travelers, evaporate for an equally mystical reason. Phantom traffic jams usually occur on busy highways and often take the form of repeatedly stopping and then accelerating up to near the